Search results

1 – 10 of over 1000
Article
Publication date: 1 January 2008

Rajneesh Kumar, Nidhi Sharma and Paras Ram

A problem concerning with the reflection and transmission of micropolar elastic plane waves at an imperfect interface between two homogeneous, isotropic micropolar elastic…

Abstract

A problem concerning with the reflection and transmission of micropolar elastic plane waves at an imperfect interface between two homogeneous, isotropic micropolar elastic half‐spaces of different micropolar elastic properties has been investigated. The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal couple stiffness, transverse couple stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. Some special cases have also been deduced from the present investigation. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness and micropolarity of the media.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 November 2013

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Ramin Yavari, Gary Lickfield, Chian-Fong Yen and Bryan Cheeseman

A series of all-atom molecular-level computational analyses is carried out in order to investigate mechanical transverse (and longitudinal) elastic stiffness and strength of p

578

Abstract

Purpose

A series of all-atom molecular-level computational analyses is carried out in order to investigate mechanical transverse (and longitudinal) elastic stiffness and strength of p-phenylene terephthalamide (PPTA) fibrils/fibers and the effect various microstructural/topological defects have on this behavior. The paper aims to discuss these issues.

Design/methodology/approach

To construct various defects within the molecular-level model, the relevant open-literature experimental and computational results were utilized, while the concentration of defects was set to the values generally encountered under “prototypical” polymer synthesis and fiber fabrication conditions.

Findings

The results obtained revealed: a stochastic character of the PPTA fibril/fiber strength properties; a high level of sensitivity of the PPTA fibril/fiber mechanical properties to the presence, number density, clustering and potency of defects; and a reasonably good agreement between the predicted and the measured mechanical properties.

Originality/value

When quantifying the effect of crystallographic/morphological defects on the mechanical transverse behavior of PPTA fibrils, the stochastic nature of the size/potency of these defects was taken into account.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 October 2014

V. Kobelev

The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author…

Abstract

Purpose

The purpose of this paper is to address the practically important problem of the load dependence of transverse vibrations for helical springs. At the beginning, the author develops the equations for transverse vibrations of the axially loaded helical springs. The method is based on the concept of an equivalent column. Second, the author reveals the effect of axial load on the fundamental frequency of transverse vibrations and derive the explicit formulas for this frequency. The fundamental natural frequency of the transverse vibrations of the spring depends on the variable length of the spring. The reduction of frequency with the load is demonstrated. Finally, when the frequency nullifies, the side buckling spring occurs.

Design/methodology/approach

Helical springs constitute an integral part of many mechanical systems. A coil spring is a special form of spatially curved column. The center of each cross-section is located on a helix. The helix is a curve that winds around with a constant slope of the surface of a cylinder. An exact stability analysis based on the theory of spatially curved bars is complicated and difficult for further applications. Hence, in most engineering applications a concept of an equivalent column is introduced. The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The transverse vibration is represented by a differential equation of fourth order in place and second order in time. The solution of the undamped model equation could be obtained by separation of variables. The fundamental natural frequency of the transverse vibrations depends on the current length of the spring. Natural frequency is the function of the deflection and slenderness ratio. Is the fundamental natural frequency of transverse oscillations nullifies, the lateral buckling of the spring with the natural form occurs. The mode shape corresponds to the buckling of the spring with moment-free, simply supported ends. The mode corresponds to the buckling of the spring with clamped ends. The author finds the critical spring compression.

Findings

Buckling refers to the loss of stability up to the sudden and violent failure of seed straight bars or beams under the action of pressure forces, whose line of action is the column axis. The known results for the buckling of axially overloaded coil springs were found using the static stability criterion. The author uses an alternative approach method for studying the stability of the spring. This method is based on dynamic equations. In this paper, the author derives the equations for transverse vibrations of the pressure-loaded coil springs. The fundamental natural frequency of the transverse vibrations of the column is proved to be the certain function of the axial force, as well as the variable length of the spring. Is the fundamental natural frequency of transverse oscillations turns to be to zero, is the lateral buckling of the spring occurs.

Research limitations/implications

The spring is substituted for the simplification of the basic equations by an equivalent column. Such a column must account for compressibility of axis and shear effects. The more accurate model is based on the equations of motion of loaded helical Timoshenko beams. The dimensionless for beams of circular cross-section and the number of parameters governing the problem is reduced to four (helix angle, helix index, Poisson coefficient, and axial strain) is to be derived. Unfortunately, that for the spatial beam models only numerical results could be obtained.

Practical implications

The closed form analytical formulas for fundamental natural frequency of the transverse vibrations of the column as function of the axial force, as well as the variable length of the spring are derived. The practically important formulas for lateral buckling of the spring are obtained.

Originality/value

In this paper, the author derives the new equations for transverse vibrations of the pressure-loaded coil springs. The author demonstrates that the fundamental natural frequency of the transverse vibrations of the column is the function of the axial force. For study of the stability of the spring the author uses an alternative approach method. This method is based on dynamic equations. The new, original expressions for lateral buckling of the spring are also obtained.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 June 2012

Rajneesh Kumar, Mandeep Kaur and S.C. Rajvanshi

The purpose of this paper is to establish a mathematical model to investigate the propagation of waves at an imperfect boundary between heat conducting micropolar elastic solid…

Abstract

Purpose

The purpose of this paper is to establish a mathematical model to investigate the propagation of waves at an imperfect boundary between heat conducting micropolar elastic solid and fluid media.

Design/methodology/approach

Wave propagation and reflection methods have been applied to solve the problem. The expressions for reflection and transmission coefficients are obtained. The corresponding derivation for the normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding has also been included.

Findings

A computer program is developed and numerical results are computed to obtain the reflection and transmission coefficients of various reflected waves with incident waves. Some special and particular cases are also discussed.

Originality/value

In this paper, stiffness effect on these amplitude ratios with the angle of incidence has been observed and depicted graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 October 2005

D. Roy Mahapatra, S. Suresh, S.N. Omkar and S. Gopalakrishnan

To develop a new method for estimation of damage configuration in composite laminate structure using acoustic wave propagation signal and a reduction‐prediction neural network to…

Abstract

Purpose

To develop a new method for estimation of damage configuration in composite laminate structure using acoustic wave propagation signal and a reduction‐prediction neural network to deal with high dimensional spectral data.

Design/methodology/approach

A reduction‐prediction network, which is a combination of an independent component analysis (ICA) and a multi‐layer perceptron (MLP) neural network, is proposed to quantify the damage state related to transverse matrix cracking in composite laminates using acoustic wave propagation model. Given the Fourier spectral response of the damaged structure under frequency band‐selective excitation, the problem is posed as a parameter estimation problem. The parameters are the stiffness degradation factors, location and approximate size of the stiffness‐degraded zone. A micro‐mechanics model based on damage evolution criteria is incorporated in a spectral finite element model (SFEM) for beam type structure to study the effect of transverse matrix crack density on the acoustic wave response. Spectral data generated by using this model is used in training and testing the network. The ICA network called as the reduction network, reduces the dimensionality of the broad‐band spectral data for training and testing and sends its output as input to the MLP network. The MLP network, in turn, predicts the damage parameters.

Findings

Numerical demonstration shows that the developed network can efficiently handle high dimensional spectral data and estimate the damage state, damage location and size accurately.

Research limitations/implications

Only numerical validation based on a damage model is reported in absence of experimental data. Uncertainties during actual online health monitoring may produce errors in the network output. Fault‐tolerance issues are not attempted. The method needs to be tested using measured spectral data using multiple sensors and wide variety of damages.

Practical implications

The developed network and estimation methodology can be employed in practical structural monitoring system, such as for monitoring critical composite structure components in aircrafts, spacecrafts and marine vehicles.

Originality/value

A new method is reported in the paper, which employs the previous works of the authors on SFEM and neural network. The paper addresses the important problem of high data dimensionality, which is of significant importance from practical engineering application viewpoint.

Details

Engineering Computations, vol. 22 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 March 2023

M.S. Barak, Rajesh Kumar, Rajneesh Kumar and Vipin Gupta

This paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).

Abstract

Purpose

This paper aims to study the energy ratios of plane waves on an imperfect interface of elastic half-space (EHS) and orthotropic piezothermoelastic half-space (OPHS).

Design/methodology/approach

The dual-phase lag (DPL) theory with memory-dependent derivatives is employed to study the variation of energy ratios at the imperfect interface.

Findings

A plane longitudinal wave (P) or transversal wave (SV) propagates through EHS and strikes at the interface. As a result, two waves are reflected, and four waves are transmitted, as shown in Figure 2. The amplitude ratios are determined by imperfect boundaries having normal stiffness and transverse stiffness. The variation of energy ratios is computed numerically for a particular model of graphite (EHS)/cadmium selenide (OPHS) and depicted graphically against the angle of incidence to consider the effect of stiffness parameters, memory and kernel functions.

Research limitations/implications

The energy distribution of incident P or SV waves among various reflected and transmitted waves, as well as the interaction of waves for imperfect interface (IIF), normal stiffness interface (NSIF), transverse stiffness interface (TSIF), and welded contact interface (WCIF), are important factors to consider when studying seismic wave behavior.

Practical implications

The present model may be used in various disciplines, such as high-energy particle physics, earthquake engineering, nuclear fusion, aeronautics, soil dynamics and other areas where memory-dependent derivative and phase delays are significant.

Originality/value

In a variety of technical and geophysical scenarios, wave propagation in an elastic/piezothermoelastic medium with varying magnetic fields, initial stress, temperature, porosity, etc., gives important information regarding the presence of new and modified waves.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 1959

J.H. Argyris and S. Kelsey

A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer. This work presents a rational method for the structural…

Abstract

A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer. This work presents a rational method for the structural analysis of stressed skin fuselages for application in conjunction with the digital computer. The theory is a development of the matrix force method which permits a close integration of the analysis and the programming for a computer operating with a matrix interpretive scheme. The structural geometry covered by the analysis is sufficiently arbitrary to include most cases encountered in practice, and allows for non‐conical taper, double‐cell cross‐sections and doubly connected rings. An attempt has been made to produce a highly standardized procedure requiring as input information only the simplest geometrical and elastic data. An essential feature is the use of the elimination and modification technique subsequent to the main analysis of the regularized structure in which all cutouts have been filled in. Current Summary A critical historical appraisal of previous work in the Western World on fuselage analysis is given in the present issue together with an outline of the ideas underlying the new theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0002-2667

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 February 2020

Changsheng Wang, Xiao Han, Caixia Yang, Xiangkui Zhang and Wenbin Hou

Numerous finite elements are proposed based on analytical solutions. However, it is difficult to find the solutions for complicated governing equations. This paper aims to present…

Abstract

Purpose

Numerous finite elements are proposed based on analytical solutions. However, it is difficult to find the solutions for complicated governing equations. This paper aims to present a novel formulation in the framework of assumed stress quasi-conforming method for the static and free vibration analysis of anisotropic and symmetric laminated plates.

Design/methodology/approach

Firstly, an initial stress approximation ruled by 17 parameters, which satisfies the equilibrium equations is derived to improve the performance of the constructed element. Then the stress matrix is treated as the weighted function to weaken the strain-displacement equations. Finally, the Timoshenko’s laminated composite beam functions are adopted as boundary string-net functions for strain integration.

Findings

Several numerical examples are presented to show the performance of the new element, and the results obtained are compared with other available ones. Numerical results have proved that the new element is free from shear locking and possesses high accuracy for the analysis of anisotropic and symmetric laminated plates.

Originality/value

This paper proposes a new QC element for the static and free vibration analysis of anisotropic and symmetric laminated plates. In contrast with the complicated analytical solutions of the equilibrium equations, an initial stress approximation ruled by 17 parameters is adopted here. The Timoshenkos laminated composite beam functions are introduced as boundary string-net functions for strain integration. Numerical results demonstrate the new element is free from shear locking and possesses high accuracy for the analysis of anisotropic and symmetric laminated plates.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1947

IT is not proposed this year to write a full review of the Annual Meeting but rather to set down, informally, those developments, trends, analyses, or predictions which appeared…

35

Abstract

IT is not proposed this year to write a full review of the Annual Meeting but rather to set down, informally, those developments, trends, analyses, or predictions which appeared most significant.

Details

Aircraft Engineering and Aerospace Technology, vol. 19 no. 3
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000