Search results

1 – 10 of over 1000
Article
Publication date: 12 January 2024

Kai Xu, Ying Xiao and Xudong Cheng

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional…

Abstract

Purpose

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional lubricants. The experiment aims to analyze whether nanoadditive lubricants can effectively reduce gear vibration and noise under different speeds and loads. It also analyzes the sensitivity of the vibration reduction to load and speed changes. In addition, it compares the axial and radial vibration reduction effects. The goal is to explore the application of nanolubricants for vibration damping and noise reduction in gear transmissions. The results provide a basis for further research on nanolubricant effects under high-speed conditions.

Design/methodology/approach

Helical gears of 20CrMnTi were lubricated with conventional oil and nanoadditive oils. An open helical gearbox with spray lubrication was tested under different speeds (200–500 rpm) and loads (20–100 N·m). Gear noise was measured by a sound level meter. Axial and radial vibrations were detected using an M+P VibRunner system and fast Fourier transform analysis. Vibration spectrums under conventional and nanolubrication were compared. Gear tooth surfaces were observed after testing. The experiment aimed to analyze the noise and vibration reduction effects of nanoadditive lubricants on helical gears and the sensitivity to load and speed.

Findings

The key findings are that nanoadditive lubricants significantly reduce the axial and radial vibrations of helical gears under low-speed conditions compared with conventional lubricants, with a more pronounced effect on axial vibrations. The vibration reduction is more sensitive to rotational speed than load. At the same load and speed, nanolubrication reduces noise by 2%–5% versus conventional lubrication. Nanoparticles change the friction from sliding to rolling and compensate for meshing errors, leading to smoother vibrations. The nanolubricants alter the gear tooth surfaces and optimize the microtopography. The results provide a basis for exploring nanolubricant effects under high speeds.

Originality/value

The originality and value of this work is the experimental analysis of the effects of nanoadditive lubricants on the vibration and noise characteristics of hard tooth surface helical gears, which has rarely been studied before. The comparative results under different speeds and loads provide new insights into the vibration damping capabilities of nanolubricants in gear transmissions. The findings reveal the higher sensitivity to rotational speed versus load and the differences in axial and radial vibration reduction. The exploration of nanolubricant effects on gear tribological performance and surface interactions provides a valuable reference for further research, especially under higher speed conditions closer to real applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0220/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2023

Lili Zhu, Jinxu Bai, Xu Liang and Maojin Jia

The purpose of this paper is to calculate the meshing stiffness of nutation face gear considering the roughness, establish the calculation method of time-varying meshing stiffness…

Abstract

Purpose

The purpose of this paper is to calculate the meshing stiffness of nutation face gear considering the roughness, establish the calculation method of time-varying meshing stiffness of rough tooth surface and analyze the influence of roughness, load and other factors on the meshing stiffness of tooth surface.

Design/methodology/approach

The Weierstrass–Mandelbrot (W-M) function in the Majumdar–Bhushan model is used to characterize the rough contact line of the tooth surface, the normal height and radius of the micro convex body are calculated and the contact flexibility of the contact point of the tooth surface is obtained. The contact flexibility and the bending shear deformation flexibility obtained previously are substituted into the improved deformation compatibility equation for iterative calculation, and the time-varying meshing stiffness of the nutation face gear considering the roughness is obtained.

Findings

Compared with ABAQUS finite element simulation results, it is found that the meshing stiffness curve of rough tooth surface is more gentle than that of smooth tooth surface, the meshing stiffness value is smaller and the meshing stiffness change is smaller at the position where the number of gear teeth coincide changes.

Originality/value

In the process of calculating contact deformation, the fractal theory W-M function is used to characterize the contact line of the rough nutation face gear, and the deformation coordination condition considering roughness is improved. Therefore, the method of time-varying meshing stiffness considering roughness can obtain more accurate results, which provides theory and data for the subsequent dynamics analysis of the nutation face gear transmission.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 13 June 2023

Marissa Condon

The purpose of the paper is the simulation of nonuniform transmission lines.

Abstract

Purpose

The purpose of the paper is the simulation of nonuniform transmission lines.

Design/methodology/approach

The method involves a Magnus expansion and a numerical Laplace transform. The method involves a judicious arrangement of the governing equations so as to enable efficient simulation.

Findings

The results confirm an effective and efficient numerical solver for inclusion of nonuniform transmission lines in circuit simulation.

Originality/value

The work combines a Magnus expansion and numerical Laplace transform algorithm in a novel manner and applies the resultant algorithm for the effective and efficient simulation of nonuniform transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 October 2023

WenFeng Qin, Yunsheng Xue, Hao Peng, Gang Li, Wang Chen, Xin Zhao, Jie Pang and Bin Zhou

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation…

Abstract

Purpose

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation methods of the system.

Design/methodology/approach

A multi-channel data acquisition scheme based on PCI-E (rapid interconnection of peripheral components) was proposed. The flexible biosensor is integrated with the flexible data acquisition card with monitoring capability, and the embedded (device that can operate independently) chip STM32F103VET6 is used to realize the simultaneous processing of multi-channel human health parameters. The human health parameters were transferred to the upper computer LabVIEW by intelligent clothing through USB or wireless Bluetooth to complete the transmission and processing of clinical data, which facilitates the analysis of medical data.

Findings

The smart clothing provides a mobile medical cloud platform for wearable medical through cloud computing, which can continuously monitor the body's wrist movement, body temperature and perspiration for 24 h. The result shows that each channel is completely accurate to the top computer display, which can meet the expected requirements, and the wearable instant care system can be applied to healthcare.

Originality/value

The smart clothing in this study is based on the monitoring and diagnosis of textiles, and the electronic communication devices can cooperate and interact to form a wearable textile system that provides medical monitoring and prevention services to individuals in the fastest and most accurate way. Each channel of the system is precisely matched to the display screen of the host computer and meets the expected requirements. As a real-time human health protection platform technology, continuous monitoring of human vital signs can complete the application of human motion detection, medical health monitoring and human–computer interaction. Ultimately, such an intelligent garment will become an integral part of our everyday clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

107

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 4 April 2024

Weihua Zhang, Yuanchen Zeng, Dongli Song and Zhiwei Wang

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to…

Abstract

Purpose

The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system. This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice. The key principles and approaches will be proposed, and their applications to high-speed trains in China will be presented.

Design/methodology/approach

First, the structural integrity and dynamical integrity of high-speed trains are defined, and their relationship is introduced. Then, the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided. Finally, the principles and approaches for assessing the dynamical integrity of high-speed trains are presented and a novel operational assessment method is further presented.

Findings

Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system. For assessing the structural integrity of structural components, an open-loop analysis considering both normal and abnormal vehicle conditions is needed. For assessing the structural integrity of dynamical components, a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed. The analysis of vehicle system dynamics should follow the principles of complete objects, conditions and indices. Numerical, experimental and operational approaches should be combined to achieve effective assessments.

Originality/value

The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects, better lifespan management of train components and better maintenance decision-making for high-speed trains.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 8 December 2023

Nahathai Boontae and Mongkol Ussavadilokrit

Effective facility management (FM) can reduce environmental effects on buildings throughout their life cycle. This study aims to investigate the challenges in implementing…

Abstract

Purpose

Effective facility management (FM) can reduce environmental effects on buildings throughout their life cycle. This study aims to investigate the challenges in implementing building information modelling (BIM) for FM in government buildings in Thailand.

Design/methodology/approach

Eight government-building facility experts were interviewed using an in-depth interview method to identify FM challenges. The collected qualitative data were analysed via thematic analysis to ensure data saturation. The final questionnaire was designed with 45 FM problems, classified into management, technical and human resource problems, to collect quantitative data from 54 government FM officers. The data were used to prioritise the severity and frequency of the FM problems using the severity index (SI) and relative importance index (RII).

Findings

Management problems have the highest impact, with an average SI of 0.285, followed by human resource (average SI = 0.266) and technical (average SI = 0.264) problems.

Originality/value

This study identifies the government-building FM problems in Thailand that are critical to the development of a BIM execution plan (BEP) guideline. The findings can facilitate strategy development for government-building operations and management in line with the public procurement and supply administration of Thailand. These findings can serve as a guideline to inform the development of a BIM Roadmap for integration into the national digital roadmap and the Thailand 4.0 policy to mitigate construction-related environmental and climate issues.

Details

Property Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 28 February 2023

Meike Huber, Dhruv Agarwal and Robert H. Schmitt

The determination of the measurement uncertainty is relevant for all measurement processes. In production engineering, the measurement uncertainty needs to be known to avoid…

Abstract

Purpose

The determination of the measurement uncertainty is relevant for all measurement processes. In production engineering, the measurement uncertainty needs to be known to avoid erroneous decisions. However, its determination is associated to high effort due to the expertise and expenditure that is needed for modelling measurement processes. Once a measurement model is developed, it cannot necessarily be used for any other measurement process. In order to make an existing model useable for other measurement processes and thus to reduce the effort for the determination of the measurement uncertainty, a procedure for the migration of measurement models has to be developed.

Design/methodology/approach

This paper presents an approach to migrate measurement models from an old process to a new “similar” process. In this approach, the authors first define “similarity” of two processes mathematically and then use it to give a first estimate of the measurement uncertainty of the similar measurement process and develop different learning strategies. A trained machine-learning model is then migrated to a similar measurement process without having to perform an equal size of experiments.Similarity assessment and model migration

Findings

The authors’ findings show that the proposed similarity assessment and model migration strategy can be used for reducing the effort for measurement uncertainty determination. They show that their method can be applied to a real pair of similar measurement processes, i.e. two computed tomography scans. It can be shown that, when applying the proposed method, a valid estimation of uncertainty and valid model even when using less data, i.e. less effort, can be built.

Originality/value

The proposed strategy can be applied to any two measurement processes showing a particular “similarity” and thus reduces the effort in estimating measurement uncertainties and finding valid measurement models.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 31 August 2022

Kaiyang Wang, Fangyu Guo, Cheng Zhang and Dirk Schaefer

The purpose of this study is to systematically identify, assess, and categorize the barriers to digital transformation (DT) in the engineering and construction sectors, and thus…

1985

Abstract

Purpose

The purpose of this study is to systematically identify, assess, and categorize the barriers to digital transformation (DT) in the engineering and construction sectors, and thus to better understand the impact and how these sectors might be overcome.

Design/methodology/approach

This study adopted a sequential mixed qualitative and quantitative data collection and analysis approach. DT barriers were first identified from relevant literature and verified by an expert panel. Then, a questionnaire survey assessing the impacts of the identified DT barriers was distributed to construction professionals in China, and 192 valid responses were retrieved. Further, the data obtained were analyzed using ranking analysis, exploratory factor analysis (EFA), and partial least squares-structural equation modeling (PLS-SEM).

Findings

Based on the ranking analysis, the top three barriers are “lack of industry-specific standards and laws,” “lack of clear vision, strategy and direction for DT,” and “lack of support from top management for DT.” EFA enabled the grouping of the 26 barriers into 3 categories: (1) lack of laws and regulations (LLR), (2) lack of support and leadership (LSL), and (3) lack of resources and professionals (LRP). The PLS-SEM analysis revealed that LLR, LSL, and LRP were found to have significant negative impacts on DT.

Originality/value

These findings contribute to the body of knowledge on DT in the construction industry and help construction firms and government bodies improve the understanding of these barriers to DT and put forward relevant policies and incentives, thus seizing the DT benefits as a way to enhance construction project management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 27 September 2023

Markus Brummer, Karl Jakob Raddatz, Matthias Moritz Schmitt, Georg Schlick, Thomas Tobie, Rüdiger Daub and Karsten Stahl

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive…

Abstract

Purpose

Numerous metals can be processed using the additive manufacturing process laser-based powder bed fusion of metals (PBF-LB/M, ISO/ASTM 52900). The main advantages of additive manufacturing technologies are the high degree of design freedom and the cost-effective implementation of lightweight structures. This could be profitable for gears with increased power density, combining reduced mass with considerable material strength. Current research on additively manufactured gears is focused on developing lightweight structures but is seldom accompanied by simulations and even less by mechanical testing. There has been very little research into the mechanical and material properties of additively manufactured gears. The purpose of this study is to investigate the behavior of lightweight structures in additively manufactured gears under static loads.

Design/methodology/approach

This research identifies the static load-carrying capacity of helical gears with different lightweight structures produced by PBF-LB/M with the case hardening steel 16MnCr5. A static gear loading test rig with a maximum torque at the pinion of T1 = 1200 Nm is used. Further focus is set on analyzing material properties such as the relative density, microstructure, hardness depth profile and chemical composition.

Findings

All additively manufactured gear variants show no failure or plastic deformation at the maximum test load. The shaft hub connection, the lightweight hub designs and the gearing itself are stable and intact regarding their form and function. The identified material characteristics are comparable to conventionally manufactured gears (wrought and machined), but also some particularities were observed.

Originality/value

This research demonstrates the mechanical strength of lightweight structures in gears. Future research needs to consider the dynamic load-carrying capacity of additively manufactured gears.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000