Search results

1 – 10 of 84
Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 February 2023

Jing Wu, Xuguang An and Hui Wang

This study aims to report the oxidation behaviors of the T91 ferritic/martensitic steel (T91 steel) and 304 austenitic stainless steel (304 steel) in supercritical water (SCW) at…

Abstract

Purpose

This study aims to report the oxidation behaviors of the T91 ferritic/martensitic steel (T91 steel) and 304 austenitic stainless steel (304 steel) in supercritical water (SCW) at 600°C.

Design/methodology/approach

The microstructure, elemental distribution and phase structure of the oxidation layers derived from the corrosion of the T91 steel and 304 steel were analyzed by scanning electron microscopy, Oxford Instrument X-ray spectroscopy, electron scattered diffraction and transmission electron microscopy.

Findings

The oxidation layers on the T91 steel and 304 steel have duplex structure. The two steels all suffer internal oxidation, and the phase of the internal oxidation layers are indexed as Fe-Cr spinel, although their morphologies are different. The formation of a continuous Cr-rich layer is not detected because of the relatively low Cr content of the steels, which is attributed to the corrosion property.

Originality/value

The accelerated corrosion and corrosion mechanism of the T91 steel and 304 steel with low Cr occurring in SCW at 600°C was clarified.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 November 2022

Ruizhe Wang, Runsheng Li, Guilan Wang, Mingbo Zhang, Jianwu Huang, Hang Lin and Haiou Zhang

Wire and arc additive manufacturing (WAAM) technology-based cold metal transfer (CMT) to produce large aluminum alloy parts has become more and more popular. In WAAM, wire is the…

Abstract

Purpose

Wire and arc additive manufacturing (WAAM) technology-based cold metal transfer (CMT) to produce large aluminum alloy parts has become more and more popular. In WAAM, wire is the only raw material. The purpose of this paper is to study the effect of wire composition on the microstructure and properties of the ZAlCu5MnCdVA alloy deposited by WAAM.

Design/methodology/approach

Two thin-walled ZAlCu5MnCdVA alloys with different wire compositions were prepared by WAAM. The copper contents were 4.7% (Al-4.7Cu) and 5.0% (Al-5.0Cu), respectively. The microstructure, element distribution and evolution of precipitated phases of the two samples were characterized and analyzed by optical microscopy, scanning electron microscopy and transmission electron microscopy. Hardness and tensile properties of samples were tested, and strengthening mechanism was analyzed in detail.

Findings

The results show that grain sizes of Al-4.7Cu and Al-5.0Cu are less than 40 μm. The average mass fraction of Cu in Al matrix and the number of nanometer scale θ'' and θ' phases are the main factors affecting the tensile properties of Al-Cu alloy. Tensile properties of two materials show different characteristics at room temperature and high temperature. Al-5.0Cu is better at room temperature and Al-4.7Cu is better at high temperature. The yield strength (YS), ultimate tensile strength (UTS) and elongation in the x direction of Al-5.0Cu at room temperature are 451 ± 10.2 MPa, 486 ± 10.2 MPa and 9 ± 0.5%, respectively. The YS, UTS and elongation in the x direction of Al-4.7Cu at high temperature are 290 ± 4.5 MPa, 356 ± 7.0 MPa and 13% ± 0.2%, respectively.

Originality/value

Experiments show that the increase of Cu element can improve the properties at room temperature of the ZAlCu5MnCdVA alloy by WAAM, but its properties at high temperature decrease.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 December 2023

B. Zhang, X.X. Wei and X.L. Ma

In recent years, using aberration-corrected transmission electron microscopy, the authors have achieved precisely detecting the structural evolution of passive film as well as its…

Abstract

Purpose

In recent years, using aberration-corrected transmission electron microscopy, the authors have achieved precisely detecting the structural evolution of passive film as well as its interface zone at atomic scale. The purpose of this paper aims to make a brief review to show the authors’ new understanding and perspective on the issue of critical factors determining stability of passive film of Fe-Cr alloy.

Design/methodology/approach

The introduction of single crystal enabled the authors to obtain a distinct metal/passive film interface and better characterize the structure of the interface region. The authors use aberration-corrected TEM to conduct cross-sectional observation and directly capture the details across the entire film at a high spatial and energy resolution.

Findings

Apart from the passive film itself, the interface zone, including metal/film (Me/F) interface and the adjacent metal side, is also the site which is attacked. Accordingly, the nature of the interface zone, such as microstructure, composition and atomic configuration, is one of the critical factors determining the stability of passive film.

Originality/value

Deciphering the critical factors determining the stability of passive film is of great significance and has been a fundamental issue in corrosion science. Great attention has been paid to the nature of the passive film itself. In contrast, the possible role of the interface between the passive film and the metal is rarely taken into account. Based on the advanced analytical tool with high spatial resolution, the authors have specified the significant role of interface structures on the macro-scale stability of passive film.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 February 2023

Arad Azizi, Fatemeh Hejripour, Jacob A. Goodman, Piyush A. Kulkarni, Xiaobo Chen, Guangwen Zhou and Scott N. Schiffres

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the…

Abstract

Purpose

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity.

Design/methodology/approach

The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity.

Findings

The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm3. The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains.

Practical implications

The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications.

Originality/value

To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.

Article
Publication date: 29 June 2023

Yesen Zhu, Cheng-Qing Gu, Jinliang Wang, Xiaohui Xi and Zhenbo Qin

The purpose of this paper is to study the effect of chromium content on the microstructure and corrosion resistance of Ni-Cr coating.

Abstract

Purpose

The purpose of this paper is to study the effect of chromium content on the microstructure and corrosion resistance of Ni-Cr coating.

Design/methodology/approach

Ni-Cr coating was prepared by pulse current electrodeposition with trivalent chromium. On the basis of studying effect of electroplating parameters on composition and morphology, Ni-Cr alloy coatings with various chromium contents were obtained. The microstructure was characterized by scanning electron microscopy, X-ray diffractometer and transmission electron microscopy. Corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques.

Findings

Electrodeposited chromium was solidly dissolved in nickel and refined the grain of the coating. With the increase of Cr content, the corrosion resistance of Ni-Cr coating was enhanced, which is due to the formation of continuous nickel hydroxide and compact chromium oxide passive films.

Originality/value

Ni-Cr alloy coating without penetration crack was prepared in trivalent chromium electrolyte, and the mechanism of its excellent corrosion resistance was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 November 2023

Rania Abdel Gwad Eloriby and Hamdy Mohamed Mohamed

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a…

Abstract

Purpose

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a significant problem in assembling this type of artifact. Therefore, the assembling process is considered one of the important stages that must be taken care of to preserve these artifacts from damage and loss.

Design/methodology/approach

To evaluate the stability of adhesives, the samples were subjected to artificial aging under varying environmental conditions. Some investigative techniques and mechanical testing were used in this study to evaluate the selected materials. It includes a transmission electron microscope, X-ray diffraction, visual assessment, digital microscope, scanning electron microscopy (SEM), color change and tensile strength test.

Findings

The visual evaluation and the digital microscope results showed that the epoxy/nano-Al2O3 greatly resisted artificial aging. Although slight yellowing was present, it did not significantly affect the general appearance of the samples. On the other hand, the pure epoxy sample showed cracks of different sizes on its surface due to aging, as evidenced by SEM examination. Furthermore, epoxy/nano-Al2O3 has a better tensile strength (11.27 MPa) and slight color change (ΔE = 2.06).

Originality/value

The main objective of the experimental study was to identify appropriate adhesive materials that possess key properties such as non-yellowing and improved tensile strength by conducting various tests and evaluations. Ultimately, the goal was to identify materials that could serve as effective adhesives for assembling the archaeological glass.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 August 2023

Hossam El-Din Fawzy, Maher Badawy and Magda Farhan

This paper aims to discuss the scanning methodology depending on the close-range photogrammetry technique, which is appropriate for the precise three-dimensional (3D) modelling of…

Abstract

Purpose

This paper aims to discuss the scanning methodology depending on the close-range photogrammetry technique, which is appropriate for the precise three-dimensional (3D) modelling of objects in millimetres, such as the dimensions and structures in sub-millimetre scale.

Design/methodology/approach

The camera was adjusted to be tilted around the horizontal axis, while coded dot targets were used to calibrate the digital camera. The experiment was repeated with different rotation angles (5°, 10°, 15°, 20°, 25°, 30°, 50° and 60°). The images were processed with the PhotoModeler software to create the 3D model of the sample and estimate its dimensions. The features of the sample were measured using high-resolution transmission electron microscopy, which has been considered as a reference and the comparative dimensions.

Findings

The results from the current study concluded that changing the rotation angle does not significantly affect the results, unless the angle of imagery is large which prevent achieving about 20: 30% overlap between the images but, the more angle decreases, the more number of images increase as well as the processing duration in the programme.

Originality/value

Develop an automatic appropriate for the precise 3D modelling of objects in millimetres, such as the dimensions and structures in sub-millimetre scale using photogrammetry.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 2024

Hongya Niu, Chunmiao Wu, Xinyi Ma, Xiaoteng Ji, Yuting Tian and Jinxi Wang

This study aims to better understand the morphological characteristics of single particle and the health risk characteristics of heavy metals in PM2.5 in different functional…

Abstract

Purpose

This study aims to better understand the morphological characteristics of single particle and the health risk characteristics of heavy metals in PM2.5 in different functional areas of Handan City.

Design/methodology/approach

High resolution transmission electron microscopy was used to observe the aerosol samples collected from different functional areas of Handan City. The morphology and size distribution of the particles collected on hazy and clear days were compared. The health risk evaluation model was applied to evaluate the hazardous effects of particles on human health in different functional areas on hazy days.

Findings

The results show that the particulate matter in different functional areas is dominated by spherical particles in different weather conditions. In particular, the proportion of spherical particles exceeds 70% on the haze day, and the percentage of soot aggregates increases significantly on the clear day. The percentage of each type of particle in the teaching and living areas varied less under different weather conditions. Except for the industrial area, the size distribution of each type of particle in haze samples is larger than that on the clear day. Spherical particles contribute more to the small particle size segment. Soot aggregate and other shaped particles contribute more to the large size segment. The mass concentrations of hazardous elements (HEs) in PM2.5 in different functional areas on consecutive haze pollution days were illustrated as industrial area > traffic area > living area > teaching area. Compared with the other functional areas, the teaching area had the lowest noncarcinogenic risk of HEs. The lifetime carcinogenic risk values of Cr and As elements in each functional area have exceeded residents’ threshold levels and are at high risk of carcinogenicity. Among the four functional areas, the industrial area has the highest carcinogenic and noncarcinogenic risks. But the effects of HEs on human health in the other functional areas should also be taken seriously and continuously controlled.

Originality/value

The significance of the study is to further understand the morphological characteristics of single particles and the health risks of heavy metals in different functional areas of Handan City. the authors hope to provide a reference for other coal-burning industrial cities to develop plans to improve air quality and human respiratory health.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 July 2022

Khaled Mostafa, Mohamed Ramadan and Azza El-Sanabary

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly…

Abstract

Purpose

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly (meth acrylic acid [MAA])–chitosan graft copolymer, which is cheap, nontoxic, biodegradable and biocompatible agent as a substitute for the traditionally used toxic reducing agents.

Design/methodology/approach

AgNPs are prepared under a range of conditions, containing silver nitrate and poly (MAA)–chitosan graft copolymer concentrations, time, temperature and pH of the preparation medium. To classify AgNPs obtained under the various conditions, ultraviolet–visible spectroscopy spectra and transmission electron microscopy images are used for characterization of AgNPs instrumentally in addition to the visual color change throughout the work. The work was further extended to study the application of the so prepared AgNPs on cotton fabric to see their suitability as antibacterial agent as well as their durability after certain washing cycles.

Findings

According to the current investigation, the optimal conditions for AgNPs formation of nearly 3–15 nm in size are 5 g/l, poly (MAA)–chitosan graft copolymer and 300 ppm AgNO3 in addition to carrying out the reaction at 60°C for 30 min at pH 12. Besides, the application of the so prepared AgNPs on cotton fabric displayed a substantial reduction in antibacterial efficiency against gram-positive and gram-negative bacteria estimated even after 10 washing cycles in comparison with untreated one.

Originality/value

To the best of the authors’ information, no comprehensive study of the synthesis of AgNPs using poly (MAA)–chitosan graft copolymer with a graft yield of 48% has been identified in the literature.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 84