Search results

1 – 10 of over 5000
Article
Publication date: 28 November 2023

Wei Li, Yuxin Huang, Leilei Ji, Lingling Ma and Ramesh Agarwal

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Abstract

Purpose

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Design/methodology/approach

This study uses a full-flow field transient calculation method of mixed-flow pump based on a closed-loop model.

Findings

The findings show the hydraulic losses and internal flow characteristics of the piping system during the start-up process.

Research limitations/implications

Large computational cost.

Practical implications

Improve the accuracy of current numerical simulation results in transient process of mixed-flow pump.

Originality/value

Simplify the setting of boundary conditions in the transient calculation.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2018

Wei Li, Leilei Ji, Weidong Shi, Ling Zhou, Xiaoping Jiang and Yang Zhang

The purpose of this paper is to experimentally and numerically study the transient hydraulic impact and overall performance during startup accelerating process of mixed-flow pump.

Abstract

Purpose

The purpose of this paper is to experimentally and numerically study the transient hydraulic impact and overall performance during startup accelerating process of mixed-flow pump.

Design/methodology/approach

In this study, the impeller rotor vibration characteristics during the starting period under the action of fluid–structure interaction was investigated, which is based on the bidirectional synchronization cooperative solving method for the flow field and impeller structural response of the mixed-flow pump. Experimental transient external characteristic and the transient dimensionless head results were compared with the numerical calculation results, to validate the accuracy of numerical calculation method. Besides, the deformation and dynamic stress distribution of the blade under the stable rotating speed and accelerating condition were studied based on the bidirectional fluid–structure interaction.

Findings

The results show that the combined action of complex hydrodynamic environment and impeller centrifugal force in the startup accelerating process makes the deformation and dynamic stress of blade have the rising trend of reciprocating oscillation. At the end of acceleration, the stress and strain appear as transient peak values and the transient effect is nonignorable. The starting acceleration has a great impact on the deformation and dynamic stress of blade, and the maximum deformation near the rim of impeller outlet edge increases 5 per cent above the stable condition. The maximum stress value increases by about 68.7 per cent more than the steady-state condition at the impeller outlet edge near the hub. The quick change of rotating speed makes the vibration problem around the blade tip area more serious, and then it takes the excessive stress concentration and destruction at the blade root.

Originality/value

This study provides basis and reference for the safety operation of pumps during starting period

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 July 2017

V. Rajesh, A.J. Chamkha, Ch. Sridevi and A.F. Al-Mudhaf

The purpose of this paper is to study numerically the influence of a magnetic field on the transient free convective boundary layer flow of a nanofluid over a moving semi-infinite…

Abstract

Purpose

The purpose of this paper is to study numerically the influence of a magnetic field on the transient free convective boundary layer flow of a nanofluid over a moving semi-infinite vertical cylinder with heat transfer

Design/methodology/approach

The problem is governed by the coupled non-linear partial differential equations with appropriate boundary conditions. The fluid is a water-based nanofluid containing nanoparticles of copper. The Brinkman model for dynamic viscosity and Maxwell–Garnett model for thermal conductivity are used. The governing boundary layer equations are written according to The Tiwari–Das nanofluid model. A robust, well-tested, implicit finite difference method of Crank–Nicolson type, which is unconditionally stable and convergent, is used to find the numerical solutions of the problem. The velocity and temperature profiles are studied for significant physical parameters such as the magnetic parameter, nanoparticles volume fraction and the thermal Grashof number Gr. The local skin-friction coefficient and the Nusselt number are also analysed and presented graphically.

Findings

The present computations have shown that an increase in the values of either magnetic parameter M or nanoparticle volume fraction decreases the local skin-friction coefficient, whereas the opposite effect is observed for thermal Grashof number Gr. The local Nusselt number increases with a rise in Gr and ϕ values. But an increase in M reduces the local Nusselt number.

Originality/value

This paper is relatively original and presents numerical investigation of transient two-dimensional laminar boundary layer free convective flow of a nanofluid over a moving semi-infinite vertical cylinder in the presence of an applied magnetic field. The present study is of immediate application to all those processes which are highly affected by heat enhancement concept and a magnetic field. Further the present study is relevant to nanofluid materials processing, chemical engineering coating operations exploiting nanomaterials and others.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Yexiang Xiao, Zhengwei Wang, Jidi Zeng, jintai Zheng, Jiayang Lin and Lanjin Zhang

The purpose of this paper is to experimentally and numerically investigate the interference characteristics between two ski-jump jets on the flip bucket in a large dam spillway…

Abstract

Purpose

The purpose of this paper is to experimentally and numerically investigate the interference characteristics between two ski-jump jets on the flip bucket in a large dam spillway when two floodgates are running.

Design/methodology/approach

The volume of fluid (VOF) method together with the Realizable k-ε turbulence model were used to predict the flow in two ski-jump jets and the free surface motion in a large dam spillway. The movements of the two gates were simulated using a dynamic mesh controlled by a User Defined Function (UDF). The simulations were run using the prototype dam as the field test to minimize errors due to scale effects. The simulation results are compared with field test observations.

Findings

The transient flow calculations, accurately predict the two gate discharges compared to field data with the predicted ski-jump jet interference flow pattern similar to the observed shapes. The transient simulations indicate that the main reason for the deflected nappe is the larger opening difference between the two gates as the buttress side gate closes. When both gates are running, the two ski-jump jets interfere in the flip bucket and raise the jet nappe to near the buttress to form a secondary flow on this jet nappe surface. As the gate continues to close, the nappe surface continues to rise and the surface secondary flow become stronger, which deflects the nappe over the side buttress.

Originality/value

A dynamic mesh is used to simulate the transient flow behavior of two prototype running gates. The transient flow simulation clarifies the hydraulics mechanism for how the two ski-jump jets interfere and deflect the nappe.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 October 2018

Ling Wang, Fujun Wang, Bryan William Karney, Ahmad Malekpour and Zhengwei Wang

The velocity head is usually neglected in the energy equation for a pipeline junction when one-dimensional (1D) hydraulic transient flow is solved by method of characteristics…

Abstract

Purpose

The velocity head is usually neglected in the energy equation for a pipeline junction when one-dimensional (1D) hydraulic transient flow is solved by method of characteristics. The purpose of this paper is to investigate the effect of velocity head on filling transients in a branched pipeline by an energy equation considering velocity head.

Design/methodology/approach

An interface tracking method is used to locate the air–water interface during pipeline filling. The pressured pipe flow is solved by a method of characteristics. A discrete gas cavity model is included to permit the occurrence of column separation. A universal energy equation is built by considering the velocity head. The numerical method is provisionally verified in a series pipeline and the numerical results and experimental data accord well with each other.

Findings

The numerical results show that some differences in filling velocity and piezometric head occur in the branched pipeline. These differences arise because the velocity head in the energy equation can become an important contributor to the hydraulic response of the system. It is also confirmed that a local high point in the profile is apt to experience column separation during rapid filling. Significantly, the magnitude of overpressure and cavity volume induced by filling transients at the local high point is predicted to increase with the velocity in the pipes.

Originality/value

The velocity head in the energy equation for a pipeline junction could play an important role in the prediction of filling velocity, piezometric head and column separation phenomenon, which should be given more attention in 1D hydraulic transient analysis.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 2003

R.E. Khayat and N. Ashrafi

A hybrid spectral/boundary element approach is proposed to examine the influence of Couette channel flow on transient coating of highly elastic fluids. The viscoelastic…

Abstract

A hybrid spectral/boundary element approach is proposed to examine the influence of Couette channel flow on transient coating of highly elastic fluids. The viscoelastic instability of one‐dimensional plane Couette flow is first determined for a large class of Oldroyd fluids with added viscosity, which typically represent polymer solutions composed of a Newtonian solvent and a polymeric solute. The Johnson‐Segalman equation is used as the constitutive model. The velocity profile inside the channel is taken as the exit profile for the emerging free‐surface flow. The flow is assumed to be Newtonian as it emerges from the channel. An estimate of the magnitude of the rate‐of‐strain tensor components in the free‐surface region reveals that they are generally smaller than the shear rate inside the channel. The evolution of the flow front is simulated using the boundary element method. For the channel flow, the problem is reduced to a non‐linear dynamical system using the Galerkin projection method. Stability analysis indicates that the channel velocity may be linear or non‐linear depending on the range of the Weissenberg number. The evolution of the coating flow at the exit is examined for steady as well as transient (monotonic and oscillatory) channel flow. It is found that adverse flow can exist as a result of fluid elasticity, which can hinder the process of blade coating.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2014

Catalin Viorel Popa, Cong Tam Nguyen, Stéphane Fohanno and Guillaume Polidori

In the present work, a theoretical model based on the full Navier-Stokes and energy equations for transient mixed convection in a vertical tube is extended to nanofluids with…

Abstract

Purpose

In the present work, a theoretical model based on the full Navier-Stokes and energy equations for transient mixed convection in a vertical tube is extended to nanofluids with nanoparticle volume fraction up to 5 percent to ensure a Newtonian fluid behaviour. The paper aims to discuss these issues.

Design/methodology/approach

The nanofluids considered, alumina/water and CuO/water, flow inside a vertical tube of circular cross-section, which is subjected to convective heat exchange at the outer surface. The transient regime is caused by a sudden change of nanofluid temperature at the tube inlet. The range of the Richardson number (1.6=Ri=2.5) investigated in this study corresponds to classic cases of mixed convection flow.

Findings

Results have shown a significant reduction in the size of the recirculation zone near the wall when the particle volume fraction increases. This may be attributed to the viscosity increase with the volume fraction. Moreover, the flow structure clearly changes when the convective heat transfer coefficient is modified. A decrease of the wall temperature along the tube was found when increasing the convective heat transfer coefficient imposed at the tube external surface.

Research limitations/implications

The problem formulation in 2D axisymmetric geometry includes the continuity, the Navier-Stokes and energy equations and is based on the stream function and vorticity; the numerical solution of equations is carried out using a finite difference method.

Practical implications

From an economic point of view, this research paper is innovative in the sense that it considers nanofluids as a new and more efficient way to transfer heat. This paper could find applications for heat exchange purposes of compact systems with high thermal loads.

Originality/value

Across the world, a still growing number of research teams are investigating nanofluids and their properties. Investigations concern several aspects such as the preparation of the nanofluids, as well as the applications of these nanofluids for convective heat transfer purposes. The dynamical study will consist in the instantaneous and spatial characterization of the dynamic flow field for different nanoparticle volume fractions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2006

Horng‐Wen Wu, Shiang‐Wuu Perng, Sheng‐Yuan Huang and Tswen‐Chyuan Jue

To investigate the effect of transient mixed convective flow interaction between circular cylinders and channel walls on heat transfer with three circular cylinders arranged in an…

Abstract

Purpose

To investigate the effect of transient mixed convective flow interaction between circular cylinders and channel walls on heat transfer with three circular cylinders arranged in an isosceles right‐angled triangle within a horizontal channel.

Design/methodology/approach

This paper uses a semi‐implicit finite element method to solve the incompressible Navier‐Stokes equation, energy equation and continuity equation in primitive‐variable form by assuming the flow to be two‐dimensional and laminar.

Findings

Provides information indicating that the transient streamlines, isotherms, drag coefficient and time‐mean Nusselt number around the surfaces of three cylinders are affected by various gap‐to‐diameter ratio, Reynolds numbers and Grashof numbers. The results show that the maximum value of surface‐ and time‐mean Nusselt number along cylinders exists at S=0.75.

Research limitations/implications

It is limited to two‐dimensional laminar flow for the transient mixed convective flow interaction between circular cylinders and channel walls in a horizontal channel.

Practical implications

A very useful source of information and favorable advice for people is applied to heat exchangers, space heating, power generators and other thermal apparatus.

Originality/value

The results of this study may be of interest to engineers attempting to develop thermal control of thermal apparatus and to researchers interested in the flow‐modification aspects of mixed convection between circular cylinders and channel walls in a horizontal channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2019

Sha Zhang, Zhengqi Gu, Wenguang Wu, Ledian Zheng, Jun Liu and Shanbin Yin

The purpose of this paper is to develop a numerical model used for calculating the nonlinearities of large-scale hydro-pneumatic suspension (HPS) and investigating the effects of…

Abstract

Purpose

The purpose of this paper is to develop a numerical model used for calculating the nonlinearities of large-scale hydro-pneumatic suspension (HPS) and investigating the effects of variations in flow path and operational parameter on suspension damping response.

Design/methodology/approach

To parameterization nonlinearities of the suspension, the author developed a two-phase flow model of a large-scale HPS based on computational fluid dynamics and volume of fluid method. Considerable effort was made to verify the nonlinearities by field measurements carried out on an off-highway mining dump truck. The investigation of effects of variations in flow path and operational parameter on damping characteristics highlights the necessity of the numerical simulation.

Findings

The two-phase flow model can represent the gas-oil interaction and simulate the suspension operational movement conveniently. Transient numerical simulation results can be used to model the nonlinearities of large-scale HPS accurately. A new phenomenon was discovered that the pressure in rebound chamber presents reduction trend during compression stroke in special cases. It has never been reported before.

Originality/value

Developed a two-phase flow model of a large-scale HPS, which can manage the gas-oil interaction and capture the complex flow field structure in it. The paper is the first study to model the nonlinearities of a large-scale HPS used in off-highway mining dump truck through transient numerical simulation. Compared with previous researches, such a research not only gives new insight and thorough understanding into the suspension internal fluid structure but also can give good guiding opinions to the optimal design of HPS.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1992

K.A. ELRAIS, W. ECKERLE, G. AHMADI and A.H. ERASLAN

A three‐dimensional, two‐phase computational model for simulating boiling‐enhanced mixed convection in free‐surface flows is presented. The associated constitutive models for the…

Abstract

A three‐dimensional, two‐phase computational model for simulating boiling‐enhanced mixed convection in free‐surface flows is presented. The associated constitutive models for the thermophysical and transport properties are described. A computational model incorporating the discrete‐element analysis was used to simulate the multi‐dimensional, two‐phase flow around a heated chip in a test tank filled with Freon‐(R113). Two and three‐dimensional simulations of both natural convection and nucleate boiling heat transfer regimes are presented. The velocity field, the temperature distribution, and the vapour concentration profiles are evaluated and discussed. The simulated heat fluxes are compared with the available experimental data. While the heat fluxes from the two‐dimensional simulation agree with the fluxes calculated for the three‐dimensional case, the flow in the tank is essentially three‐dimensional. The results show that there are secondary flows which cannot be captured by a two‐dimensional model. The heat flux in the boiling heat transfer regime is only about ten times larger than that in the natural convection regime due to the small vapour concentration in tank.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000