Search results

1 – 10 of 490
Article
Publication date: 15 July 2019

Zbigniew Szular and Witold Mazgaj

The purpose of this paper is to present the method which relatively easily allows to approximate the hysteresis loop of the dynamo or transformer steel sheets. The paper also…

79

Abstract

Purpose

The purpose of this paper is to present the method which relatively easily allows to approximate the hysteresis loop of the dynamo or transformer steel sheets. The paper also looks into the formulation of an equation allowing determination of distribution of the flux density and eddy currents in cross-section of these sheets.

Design/methodology/approach

An exponential function was applied in the presented method relating to the approximation of the hysteresis loop. When the field strength changes its value, then, the flux density are the sum or difference of a function, describing the lower or upper hysteresis curve and some “ransient” component. On the basis of Maxwell’s equations and Amper’s law, one non-linear differential equation was formulated which allows to calculate the flux density and eddy currents in a cross-section of a transformer sheet.

Findings

The method which relatively easily allows approximation of the hysteresis loop of ferromagnetic material is presented in the paper. The paper presents the derivation of one non-linear differential equation, allowing calculation of the flux density and eddy currents in the cross-section of the transformer sheets, taking into account the hysteresis phenomenon.

Practical implications

The paper presents the method that can be used in modeling of the hysteresis loops of dynamo or transformer sheets, and the final non-linear differential equation can be applied in calculations of the magnetic field and eddy currents in cross-section of the transformer sheets.

Originality/value

The paper refers to important issues of modeling and calculations of the magnetic and eddy current field distribution in transformer steel sheets.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 1941

C.H. Plock

IN airframes of all‐metal construction an exceedingly important part is played by the riveting; e.g. no fewer than 250,000 rivets arc needed for the construction of a Focke‐Wulf…

Abstract

IN airframes of all‐metal construction an exceedingly important part is played by the riveting; e.g. no fewer than 250,000 rivets arc needed for the construction of a Focke‐Wulf “Condor.” It will be understood therefore why, with the increasing demands being made on the rate of aircraft production, the question of riveting methods receives such special attention. The object is, to save man‐hours, and thus to increase the rate of production.

Details

Aircraft Engineering and Aerospace Technology, vol. 13 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1980

Magnetic particle flaw detection is one of the longest established and most commonly used methods of non‐destructive testing. It can often be applied in a relatively quick and…

Abstract

Magnetic particle flaw detection is one of the longest established and most commonly used methods of non‐destructive testing. It can often be applied in a relatively quick and simple manner. Because of this, it is frequently treated as the “poor relation” in present day non‐destructive test methods and regarded as a method which can be performed by unskilled labour. While this may sometimes be true in semi‐automatic production line testing there are many applications which require considerable knowledge and experience. The use of magnetic particle flaw detection has increased considerably in the past few years. It is now being recognised as essential to supplement visual examination in many areas of in‐service inspection on all types of plant. This article, to be published in four parts, is directed towards maintenance engineers and inspectors who may wish to use the method themselves or would like to have the basic knowledge to ensure that any such tests requested and performed on their behalf, are carried out correctly.

Details

Anti-Corrosion Methods and Materials, vol. 27 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 9 September 2013

Manfred Kaltenbacher, Adrian Volk and Michael Ertl

The modeling of magnetostrictive effects is a topic of intensive research. The authors' goal is the precise modeling and numerical simulation of the magnetic field and resulting…

Abstract

Purpose

The modeling of magnetostrictive effects is a topic of intensive research. The authors' goal is the precise modeling and numerical simulation of the magnetic field and resulting mechanical vibrations caused by magnetostriction along the joint regions of electric transformers.

Design/methodology/approach

The authors apply the finite element (FE) method to efficiently solve the arising coupled system of partial differential equations describing magnetostriction. Hereby, they fully take the anisotropic behavior of the material into account, both in the computation of the nonlinear electromagnetic field as well as the induced magnetostrictive strains. To support their material models, the authors measure the magnetic as well as the mechanical hysteresis curves of the grain-oriented electrical steel sheets with different orientations (w.r.t the rolling direction). From these curves they then extract for each orientation the corresponding commutation curve, so that the hysteretic behavior is simplified to a nonlinear one.

Findings

The numerical simulations show strong differences both in the magnetic field as well as mechanical vibrations when comparing this newly developed anisotropic model to an isotropic one, which just uses measured curves in rolling direction of the steel sheets. Therefore, a realistic modeling of the magnetostrictive behavior, especially for grain-oriented electrical steel as used in transformers, needs to take into account the anisotropic material behavior.

Originality/value

The authors have developed an enhanced material model for describing magnetostrictive effects along the joint regions of electric transformers, which fully considers the anisotropic material behavior. This model has been integrated into a FE scheme to numerically simulate the mechanical vibrations in transformer cores caused by magnetostriction.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Baodong Bai and Jiayin Wang

The magnetostriction of grain-oriented electrical silicon steel sheet is studied for the magnetic field direction along the rolling direction and deviating from it. The method of…

Abstract

Purpose

The magnetostriction of grain-oriented electrical silicon steel sheet is studied for the magnetic field direction along the rolling direction and deviating from it. The method of calculating the vibration of transformer is developed through COMSOL. The paper aims to discuss these issues.

Design/methodology/approach

Measurements of signals of magnetostriction and magnetic polarization, and calculation through software.

Findings

The angle between the magnetic field direction and the rolling direction does a great influence on magnetostriction strain.

Originality/value

The maximum λ p-p of transversal magnetostriction is above 30 times more than the value when the angle is 0°. The transversal magnetostriction is a main reason of vibration increasing at the corner of transformer.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2001

Zbigniew Gmyrek and Grzegorz Zwoliński

The commonly used power electronic systems in the drives of electrical machines as well as in the nonlinear receivers, being the transformer’s load, are the main origin of the…

Abstract

The commonly used power electronic systems in the drives of electrical machines as well as in the nonlinear receivers, being the transformer’s load, are the main origin of the deformation in the voltage supply. Due to these, the voltage curve is not sinusoidally variable. In these cases additional power losses take place in the motor and transformer cores which occur due to higher order harmonics of the flux. This paper presents a method to determine the power losses for the core where there are two fluxes in the steel sheet: one with relatively small amplitude and high frequency, and the other one with relatively large amplitude but low frequency.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Phamella Reinert Tamanini Piccoli, Sérgio Henrique Lopes Cabral, Luiz Fernando de Oliveira, Odirlan Iaronka, Diogo Fernando Harmel, João Paulo Vieira and João Egídio Sapeli

This paper aims to present the proposition of a new experimental method for obtaining very crucial data of the structural steel that is used in the tank of oil filled power…

Abstract

Purpose

This paper aims to present the proposition of a new experimental method for obtaining very crucial data of the structural steel that is used in the tank of oil filled power transformers, namely, the volumetric losses and the magnetic permeability, both in function of the density of magnetic flux. Although these data are not usually available, they are fundamental for helping the transformer designer in avoiding the occurrence of hot spots in the transformer tank. The adoption of a conventional Epstein frame has restrictions because of the incompatibility between it and the samples of the steel.

Design/methodology/approach

The basis of the proposition is the same as that of the Epstein frame, with significant attention paid to the additional losses in the winding that creates the magnetic flux to the samples in the core. These losses can be significant and are created by the harmonics of current along the windings and are summed to the ohmic losses. For separating these winding losses from the magnetic losses, each sample is made as being the core of a toroidal 1:1 transformer. Thus, two tests with two identic of these toroidal transformers are necessary.

Findings

The proposed methodology is simple, because it is very similar to the classical tests of transformers (no-load and short-circuit tests). The process of separation of losses requires only a numerical fitting of curves for adjusting the winding losses as a function of the current amplitude, and the obtained results are coherent with the expected behavior of the magnetic losses and the magnetic permeability of a structural steel.

Research limitations/implications

The method gives very approximate results in comparison to those obtained using the Epstein frame. The influences of the temperature and/or of the skin effect have not been evaluated.

Practical implications

Practical, real and thus confident data of structural steel, such as the magnetic permeability and the volumetric losses (hysteresis and Foucault), become available for the transformer designer to take actions for not only reducing the tank losses but also for avoiding the occurrence of hot spots through computer simulation.

Originality/value

The proposition is very new, as it allows to test steel samples with a size that does not fit to a usual Epstein frame. It takes into account the real influence of harmonic of currents in the losses along the winding of a classical Epstein frame, which has not been so far mentioned. It allows obtaining data of structural steel that had not been considered important until now.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Xiaoyan Wang, Zhiguang Cheng, Li Lin and Jianmin Wang

– The purpose of this paper is to present a simple method to analyze the iron loss in the laminated core of power and distribution transformers.

Abstract

Purpose

The purpose of this paper is to present a simple method to analyze the iron loss in the laminated core of power and distribution transformers.

Design/methodology/approach

This paper presents a practical method to calculate the no-load loss in the transformer cores. Considering the non-uniformity of the magnetic flux density in the corner areas of the Epstein frames will affect the measurement precision of the Wt-B curves then further affect the core loss calculation in FEM, a dual-Epstein frame method is used to measure the Wt-B curves with the Epstein sample stripes cutting by different angles to the rolling direction. A 2D FEM that considers the type of joints of the core and eddy current effect in the laminations is used to analyze the core loss with multi-angle Wt-B curves.

Findings

The impact of lamination thickness, size of gaps and type of joint of the core are considered. Considering the no-load testing conditions, harmonics in the exciting currents are taken into account.

Originality/value

Harmonic wave of magnetic flux density in the transformer core is calculated and the core loss in the joint region is calculated by the loss curve measured with dual-Epstein frame. It makes the calculation result of transformer core loss more exactly.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 March 2020

Stéphane Duchesne, Fabrice Morganti, Carl Shulz and Daniel Roger

This study presents a new method for the detection of faults in large transformer cores. It is based on the analysis of leakage flux components in the vicinity of the sheet stack…

Abstract

Purpose

This study presents a new method for the detection of faults in large transformer cores. It is based on the analysis of leakage flux components in the vicinity of the sheet stack. The purpose of this study is to provide a nondestructive analysis tool for transformer cores during the assembly process to detect accidental defects such as inter-laminar short circuits.

Design/methodology/approach

The different components of the leakage flux allow localization of the fault in the stack and also permit to assess its severity. Out of the many kinds of defects which may appear in a transformer core, this method only detects those which actually cause an increase in the transformer’s global iron losses, which are thus the most detrimental.

Findings

The proposed method allows a more efficient control of the quality of the cores during their manufacturing process. Until now, it was only possible to know the quality of the core when the transformer was fully assembled.

Research limitations/implications

The accuracy of the method depends on the size of the defect and may request many measurements to give usable information.

Practical implications

Controlling iron losses in a core during its construction avoids heavy dismantling operations, both financially and temporally.

Originality/value

This method can help transformer manufacturers optimize their building process. In addition, the method remains effective regardless of the size of the core considered.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 490