Search results

1 – 10 of 899
Article
Publication date: 25 February 2021

Sudipta Ghosh, P. Venkateswaran and Subir Kumar Sarkar

High packaging density in the present VLSI era builds an acute power crisis, which limits the use of MOSFET device as a constituent block in CMOS technology. This leads…

Abstract

Purpose

High packaging density in the present VLSI era builds an acute power crisis, which limits the use of MOSFET device as a constituent block in CMOS technology. This leads researchers in looking for alternative devices, which can replace the MOSFET in CMOS VLSI logic design. In a quest for alternative devices, tunnel field effect transistor emerged as a potential alternative in recent times. The purpose of this study is to enhance the performances of the proposed device structure and make it compatible with circuit implementation. Finally, the performances of that circuit are compared with CMOS circuit and a comparative study is made to find the superiority of the proposed circuit with respect to conventional CMOS circuit.

Design/methodology/approach

Silicon–germanium heterostructure is currently one of the most promising architectures for semiconductor devices such as tunnel field effect transistor. Analytical modeling is computed and programmed with MATLAB software. Two-dimensional device simulation is performed by using Silvaco TCAD (ATLAS). The modeled results are validated through the ATLAS simulation data. Therefore, an inverter circuit is implemented with the proposed device. The circuit is simulated with the Tanner EDA tool to evaluate its performances.

Findings

The proposed optimized device geometry delivers exceptionally low OFF current (order of 10^−18 A/um), fairly high ON current (5x10^−5 A/um) and a steep subthreshold slope (20 mV/decade) followed by excellent ON–OFF current ratio (order of 10^13) compared to the similar kind of heterostructures. With a very low threshold voltage, even lesser than 0.1 V, the proposed device emerged as a good replacement of MOSFET in CMOS-like digital circuits. Hence, the device is implemented to construct a resistive inverter to study the circuit performances. The resistive inverter circuit is compared with a resistive CMOS inverter circuit. Both the circuit performances are analyzed and compared in terms of power dissipation, propagation delay and power-delay product. The outcomes of the experiments prove that the performance matrices of heterojunction Tunnel FET (HTFET)-based inverter are way ahead of that of CMOS-based inverter.

Originality/value

Germanium–silicon HTFET with stack gate oxide is analytically modeled and optimized in terms of performance matrices. The device performances are appreciable in comparison with the device structures published in contemporary literature. CMOS-like resistive inverter circuit, implemented with this proposed device, performs well and outruns the circuit performances of the conventional CMOS circuit at 45-nm technological node.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 October 2023

Shiva Rani

Knowledge management (KM) is a process that depends on changes and transfers to different levels of understanding among individuals and acts as a powerful tool to strengthen the…

Abstract

Purpose

Knowledge management (KM) is a process that depends on changes and transfers to different levels of understanding among individuals and acts as a powerful tool to strengthen the organization to remove the barriers, affect the decision-making process and enable individuals and organizations to achieve sustainable advantages. This study aims to explore the role of digitization on knowledge conversion modes and its subsequent impact on related outcomes with reference to higher education institutions (HEIs). Prospects and paradigms of digitation for HEIs have also been explored.

Design/methodology/approach

The systematic review method has been used to organize and analyze the existing literature on digitization, knowledge conversion and related outcomes with reference to HEIs. To increase the scope of the research, the authors anticipated 30 research articles published between 2010 and 2022 in Google Scholar, Scopus, ProQuest and EBSCO databases. The study used PRISMA to conduct a systematic literature review. The study used “knowledge conversion, “SECI model,” “Digitalization” and “Higher education institutions” keywords to search the most suitable articles. To ensure the quality of this research, the study used quality journals.

Findings

The increasing significance of knowledge-building practices and a technology-driven environment insinuates the adoption of information and communication technology (ICT)-enabled equipment and devices to transfer knowledge, which further leads toward enhancing the effectiveness of education. This study offers a review of enabling factors based on Nonaka and Takeuchi’s (1995) knowledge spiral and provides an in-depth insight into the significance of digitization for the higher education sector.

Practical implications

The study’s main contribution was to explore the interrelationship among digitization, knowledge conversion and outcomes. Both technological and non-technological/conventional interventions have been discussed with reference to teaching and knowledge dissemination patterns based on Nonaka’s (1994) Socialization, Externalization, Combination, and Internalization (SECI) knowledge spiral.

Originality/value

The authors synthesize the previous literature research dimensions and recommend future research.

Details

Journal of Applied Research in Higher Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-7003

Keywords

Article
Publication date: 25 December 2023

Justyna Bekier and Cristiana Parisi

Existing performance assessment frameworks, such as the Sustainable Development Goals (SDGs), struggle to incorporate diverse voices and representations of heterogeneous contexts…

Abstract

Purpose

Existing performance assessment frameworks, such as the Sustainable Development Goals (SDGs), struggle to incorporate diverse voices and representations of heterogeneous contexts. Cities, in particular, present a challenging context for sustainability performance assessment as they pursue new forms of governance based on the multiplicity of actors and inter-organisational collaboration. This study explores how sustainability performance accounts are created at the urban level within collaborative forms of governance and amidst the plethora of available devices for performance assessment.

Design/methodology/approach

This study adopts a case study approach. Qualitative methods are mobilised to study a large European project focused on the urban transition to a circular economy in six participating cities. The construction of sustainability performance accounts is studied via the Actor-Network Theory lens.

Findings

The study highlights that when it comes to sustainability assessment in city initiatives, existing performance assessment devices are adapted and modified to fit local needs and other sources of performance information are spontaneously mobilised to address the different dimensions of sustainability.

Originality/value

This study contributes to the public sector accounting literature by explaining the process of modifying existing devices for performance assessment to allow for the co-creation of accounts and by illuminating the spontaneous way in which performance information is generated and combined.

Details

Journal of Public Budgeting, Accounting & Financial Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1096-3367

Keywords

Article
Publication date: 16 November 2022

Hesam Khorrami Shad, Kenneth Tak Wing Yiu, Ruggiero Lovreglio and Zhenan Feng

This paper aims to explore augmented reality (AR) applications in construction safety academic literature and propose possible improvements for future scholarly works. The paper…

Abstract

Purpose

This paper aims to explore augmented reality (AR) applications in construction safety academic literature and propose possible improvements for future scholarly works. The paper explicitly focuses on AR integration with Construction 4.0 technologies as an effective solution to safety concerns in the construction industry.

Design/methodology/approach

This study applied a systematic review approach. In total, 387 potentially relevant articles from databases were identified. Once filtering criteria were applied, 29 eligible papers where selected. The inclusion criteria were being directly associated with construction safety focused on an AR application and AR interactions associated with the Construction 4.0 technologies.

Findings

This study investigated the structure of AR applications in construction safety. To this end, the authors studied the safety purposes of AR applications in construction safety: pre-event (intelligent operation, training, safety inspection and hazard alerting), during-event (pinpointing hazard) and post-event (safety estimation) applications. Then, the integration of AR with Construction 4.0 technologies was elaborated. The systematic review also revealed that the AR integration has contributed to developing several technical aspects of AR technology: display, tracking and human–computer interaction. The study results indicate that AR integration with construction is effective in mitigating safety concerns; however, further research studies are required to support this statement.

Originality/value

This study contributes to exploring applications and integrations of AR into construction safety in order to facilitate the leverage of this technology. This review can help encourage practitioners and researchers to conduct further academic investigations into AR application in construction safety.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 April 2024

Nalan Gündüz, Selim Zaim and Yaman Ömer Erzurumlu

This paper aims to investigate the influence of health beliefs and trust by senior adults as associated with the perceived ease of use and perceived usefulness, for the acceptance…

Abstract

Purpose

This paper aims to investigate the influence of health beliefs and trust by senior adults as associated with the perceived ease of use and perceived usefulness, for the acceptance of smart technology with a focus on smartwatch technology.

Design/methodology/approach

Structural equation modeling is used to conceptualize the model using survey data collected from 243 randomly selected senior adults 60+ years of age.

Findings

This paper presents that perceived usefulness, perceived ease of use, trust and health belief are direct and indirect predictors of senior adults’ technology acceptance and intention to use smartwatch technology.

Research limitations/implications

The study reveals the moderator effect of social influence on relation between perceived usefulness, perceived ease of use and intention to use. The authors highlight the effect of health belief and trust on perceived usefulness and perceived ease of use and the role of intention to use smartwatch technology.

Practical implications

The authors contribute bridging developers of health technologists and senior adults as end-user perspectives. For marketing of health-care technology products, specifically smartwatch, to seniors, a focus on health beliefs and trust is essential to build, maintain and improve perceived usefulness and perceived ease of use.

Originality/value

The present study contributes empirical evidence to the literature on factors affecting the acceptance of the smartwatch technology by senior adults.

Details

International Journal of Pharmaceutical and Healthcare Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6123

Keywords

Article
Publication date: 14 February 2023

Mansoure Dormohamadi, Mansoureh Tahbaz and Azin Velashjerdi Farahani

Life experience in hot and arid areas of Iran has proved that in the transitional seasons (spring and autumn) in which the climate is not too hot, passive cooling systems such as…

118

Abstract

Purpose

Life experience in hot and arid areas of Iran has proved that in the transitional seasons (spring and autumn) in which the climate is not too hot, passive cooling systems such as windcatchers (baadgir) have functioned well. This paper intends to investigate the efficiency of a single-side windcatcher as a passive cooling strategy; the case study is the Bina House windcatcher, located in Khousf town, near Birjand city, Iran.

Design/methodology/approach

To achieve the aim, air temperature, relative humidity, wind data and mean radiant temperature were measured by the related tools over five days from September 23 to October 23. Then, the thermal performance of the windcatcher was examined by analyzing the effects of all these factors on human thermal comfort. Quantitative assessment of the indoor environment was estimated using DesignBuilder and its computational fluid dynamics (CFD) tool, a thermal comfort simulation method to compare the cooling potential of the windcatcher. Windcatcher performance was then compared with two other common cooling systems in the area: single-side window, and evaporative cooler.

Findings

The results showed that both windcatcher and evaporative cooler can provide thermal comfort for Khousf residents in the transitional seasons; but the difference is that an evaporative cooler needs to consume water and electricity power, while a windcatcher is a passive cooling system that uses clean energy of wind.

Originality/value

The present study, by quantitative study of single-side windcatchers in a desert region, measured the climatic factors of a historical house and compared it with thermal comfort criteria. Therefore, the results of field measurements were analyzed, and the efficiency of the windcatcher was compared with two other cooling systems, namely single-side ventilation and evaporative cooler, in the two seasons of summer and autumn (transition seasons).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 20 February 2024

Alenka Kavčič Čolić and Andreja Hari

The current predominant delivery format resulting from digitization is PDF, which is not appropriate for the blind, partially sighted and people who read on mobile devices. To…

Abstract

Purpose

The current predominant delivery format resulting from digitization is PDF, which is not appropriate for the blind, partially sighted and people who read on mobile devices. To meet the needs of both communities, as well as broader ones, alternative file formats are required. With the findings of the eBooks-On-Demand-Network Opening Publications for European Netizens project research, this study aims to improve access to digitized content for these communities.

Design/methodology/approach

In 2022, the authors conducted research on the digitization experiences of 13 EODOPEN partners at their organizations. The authors distributed the same sample of scans in English with different characteristics, and in accordance with Web content accessibility guidelines, the authors created 24 criteria to analyze their digitization workflows, output formats and optical character recognition (OCR) quality.

Findings

In this contribution, the authors present the results of a trial implementation among EODOPEN partners regarding their digitization workflows, used delivery file formats and the resulting quality of OCR results, depending on the type of digitization output file format. It was shown that partners using the OCR tool ABBYY FineReader Professional and producing scanning outputs in tagged PDF and PDF/UA formats achieved better results according to set criteria.

Research limitations/implications

The trial implementations were limited to 13 project partners’ organizations only.

Originality/value

This research paper can be a valuable contribution to the field of massive digitization practices, particularly in terms of improving the accessibility of the output delivery file formats.

Details

Digital Library Perspectives, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5816

Keywords

Article
Publication date: 1 June 2023

Nihar J. Gonsalves, Anthony Yusuf, Omobolanle Ogunseiju and Abiola Akanmu

Concrete workers perform physically demanding work in awkward postures, exposing their backs to musculoskeletal disorders. Back-support exoskeletons are promising ergonomic…

Abstract

Purpose

Concrete workers perform physically demanding work in awkward postures, exposing their backs to musculoskeletal disorders. Back-support exoskeletons are promising ergonomic interventions designed to reduce the risks of back disorders. However, the suitability of exoskeletons for enhancing performance of concrete workers has not been largely explored. This study aims to assess a passive back-support exoskeleton for concrete work in terms of the impact on the body, usability and benefits of the exoskeleton, and potential design modifications.

Design/methodology/approach

Concrete workers performed work with a passive back-support exoskeleton. Subjective and qualitative measures were employed to capture their perception of the exoskeleton, at the middle and end of the work, in terms of discomfort to their body parts, ease of use, comfort, performance and safety of the exoskeleton, and their experience using the exoskeleton. These were analyzed using descriptive statistics and thematic analysis.

Findings

The exoskeleton reduced stress on the lower back but caused discomfort to other body parts. Significant correlations were observed between perceived discomfort and usability measures. Design modifications are needed to improve the compatibility of the exoskeleton with the existing safety gears, reduce discomfort at chest and thigh, and improve ease of use of the exoskeleton.

Research limitations/implications

The study was conducted with eight concrete workers who used the exoskeleton for four hours.

Originality/value

This study contributes to existing knowledge on human-wearable robot interaction and provides suggestions for adapting exoskeleton designs for construction work.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 May 2023

Abeeku Sam Edu

This study investigates the pathways for adopting IoTs and BDA technologies to improve healthcare management.

Abstract

Purpose

This study investigates the pathways for adopting IoTs and BDA technologies to improve healthcare management.

Design/methodology/approach

The study relied on 445 healthcare professionals' perspectives to explore different causal pathways to IoTs and BDA adoption and usage for daily healthcare management. The Fussy-set Qualitative Comparative Analysis was adopted to explore the underlying pathways for healthcare management.

Findings

The empirical analysis revealed six different configural paths influencing the acceptance and use of IoTs and BDA for healthcare improvement. Two key user topologies from the six configural paths, digital literacy and ease of use and social influence and behavioural intentions, mostly affect the paths for using digital health technologies by healthcare physicians.

Research limitations/implications

Despite this study's novel contributions, limitations include the fsQCA methodology, perceptual data and the context of the study. The fsQCA methodology is still evolving with different interpretations, although it reveals new insights and as such further studies are required to explain the configural paths of social phenomena. Additionally, future research should consider other constructs beyond the UTAUT and digital literacy to illustrate configural paths to healthcare technology acceptance and usage. Again, the views of healthcare professionals are perceptual data. Hence future research on operational data will support significant contributions towards pathways to accept and use emerging technologies for healthcare improvement. Lastly, this study is from a developing country perspective where emerging digital healthcare technology is still emerging to support healthcare management. Hence, more investigation from other cross-country analyses of configural paths for digital technology deployment in healthcare will enhance the conversation with IoTs and BDA for healthcare management.

Practical implications

Holistically, the acceptance and use of healthcare technologies and platforms is not solely on their capabilities, but a combination of distinct factors driven by users' perspectives. This offers healthcare administrators and institutions to essentially reflect on the distinct combinations of conditions favourable to health professionals who can use IoTs and BDA for healthcare improvement.

Originality/value

This study is among the few scholarly works to empirically investigate the configural paths to support healthcare improvement with emerging technologies. Using fsQCA is a unique contribution to existing information system literature for configural paths for healthcare improvement with emerging digital technologies.

Details

Aslib Journal of Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-3806

Keywords

1 – 10 of 899