Search results

1 – 10 of 525
Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 21 December 2023

Rafael Pereira Ferreira, Louriel Oliveira Vilarinho and Americo Scotti

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards…

Abstract

Purpose

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.

Design/methodology/approach

For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).

Findings

The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.

Originality/value

This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2024

Yuepeng Zhang, Guangzhong Cao, Linglong Li and Dongfeng Diao

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in…

Abstract

Purpose

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction motion.

Design/methodology/approach

A trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human–exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human–exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.

Findings

Six volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction.

Originality/value

The AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human–exoskeleton interaction movements.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 January 2024

Kaizheng Zhang, Jian Di, Jiulong Wang, Xinghu Wang and Haibo Ji

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual…

Abstract

Purpose

Many existing trajectory optimization algorithms use parameters like maximum velocity or acceleration to formulate constraints. Due to the ignoring of the quadrotor actual tracking capability, the generated trajectories may not be suitable for tracking control. The purpose of this paper is to design an online adjustment algorithm to improve the overall quadrotor trajectory tracking performance.

Design/methodology/approach

The authors propose a reference trajectory resampling layer (RTRL) to dynamically adjust the reference signals according to the current tracking status and future tracking risks. First, the authors design a risk-aware tracking monitor that uses the Frenét tracking errors and the curvature and torsion of the reference trajectory to evaluate tracking risks. Then, the authors propose an online adjusting algorithm by using the time scaling method.

Findings

The proposed RTRL is shown to be effective in improving the quadrotor trajectory tracking accuracy by both simulation and experiment results.

Originality/value

Infeasible reference trajectories may cause serious accidents for autonomous quadrotors. The results of this paper can improve the safety of autonomous quadrotor in application.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 March 2024

Weiqiang Xue, Jingfeng Shen and Yawen Fan

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex…

Abstract

Purpose

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex transient response of the rotor dynamics. The current study of the shaft center trajectory of the SHSBs rotor system is based on the assumption that the rotational speed is constant, which cannot truly reflect the trajectory of the rotor during operation. The purpose of this paper truly reflects the trajectory of the rotor and further investigates the stability of the rotor system during acceleration of SHSBs.

Design/methodology/approach

The model for accelerated rotor dynamics of SHSBs is established. The model is efficiently solved based on the fourth-order Runge–Kutta method and then to obtain the shaft center trajectory of the rotor during acceleration.

Findings

Results show that the bearing should choose larger angular acceleration in the acceleration process from startup to the working speed; rotor system is more stable. With the target rotational speed increasing, the changes in the shaft trajectory of the acceleration process are becoming more complex, resulting in more time required for the bearing stability. When considering the stability of the rotor system during acceleration, the rotor equations of motion provide a feasible solution for the simulation of bearing rotor system.

Originality/value

The study can simulate the running stability of the shaft system from startup to the working speed in this process, which provides theoretical guidance for the stability of the rotor system of the SHSBs in the acceleration process.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 April 2024

Yuting Wang, Guodong Sun, Haisheng Wang and Bobo Jian

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D…

Abstract

Purpose

The purpose of this study is to solve the issues of time-consuming and complicated computation of traditional measures, as well as the underutilization of two-dimensional (2D) phase-trajectory projection matrix, so a new set of features were proposed based on the projection of attractors trajectory to characterize the friction-induced attractors and to reveal the tribological behavior during the running-in process.

Design/methodology/approach

The frictional running-in experiments were conducted by sliding a ball against a static disk, and the friction coefficient was collected to reconstruct the friction-induced attractors. The projection of the attractors in 2D subspace was then mapped and the distribution of phase points was adapted to conduct the feature extraction.

Findings

The evolution of the proposed moment measures could be described as “initial rapid decrease/increase- midterm gradual decrease/increase- finally stable,” which could effectively reveal the convergence degree of the friction-induced attractors. Moreover, the measures could also describe the relative position of the attractors in phase–space domain, which reveal the amplitude evolution of signals to some extent.

Originality/value

The proposed measures could reveal the evolution of tribological behaviors during the running-in process and meet the more precise real-time running-in status identification.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 April 2024

Hangyue Zhang, Yanchu Yang and Rong Cai

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further…

Abstract

Purpose

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further ascent motion after airborne launching. In terms of unmanned aerial vehicles (UAVs), the tailspin state and the charge-out process with an anti-tailspin parachute-assisted suspending are analyzed. Then, the authors conduct trajectory optimization simulations for the long-distance gliding process.

Design/methodology/approach

The balloon kinematics model and the parachute Kane multibody dynamic model are established. Using steady-state tailspin to reduced-order analysis and achieving change-out simulation by parachute suspension dynamic model. A reentry optimization control problem is developed and the Radau pseudo-spectral method is used to calculate the glide trajectory.

Findings

The established dynamic model and trajectory optimization method can effectively simulate the motion process of balloons and UAVs. The system mass reduction for launching UAVs will not cause damage to the balloon structure. The anti-tailspin parachute can reduce the UAV attack angles effectively. The UAV can glide to the designated target position by adjusting the attack angle and sideslip angle. The farthest flight distance after launching from 20 km height is 94 km and the gliding time is 40 min, which demonstrates the potential application advantage of high-altitude launching.

Practical implications

The research content and related conclusions of this article achieve a closed-loop analysis of the flight mission chain for the “balloon-borne UAV system,” which provides simulation references for relevant balloon launching experiments.

Originality/value

This paper establishes a complete set of numerical simulation models and can effectively analyze various postlaunching behaviors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 19 April 2024

Lars Mjøset, Roel Meijer, Nils Butenschøn and Kristian Berg Harpviken

This study employs Stein Rokkan's methodological approach to analyse state formation in the Greater Middle East. It develops a conceptual framework distinguishing colonial…

Abstract

This study employs Stein Rokkan's methodological approach to analyse state formation in the Greater Middle East. It develops a conceptual framework distinguishing colonial, populist and democratic pacts, suitable for analysis of state formation and nation-building through to the present period. The framework relies on historical institutionalism. The methodology, however, is Rokkan's. The initial conceptual analysis also specifies differences between European and the Middle Eastern state formation processes. It is followed by a brief and selective discussion of historical preconditions. Next, the method of plotting singular cases into conceptual-typological maps is applied to 20 cases in the Greater Middle East (including Afghanistan, Iran and Turkey). For reasons of space, the empirical analysis is limited to the colonial period (1870s to the end of World War 1). Three typologies are combined into one conceptual-typological map of this period. The vertical left-hand axis provides a composite typology that clarifies cultural-territorial preconditions. The horizontal axis specifies transformations of the region's agrarian class structures since the mid-19th century reforms. The right-hand vertical axis provides a four-layered typology of processes of external intervention. A final section presents selected comparative case reconstructions. To the authors' knowledge, this is the first time such a Rokkan-style conceptual-typological map has been constructed for a non-European region.

Details

A Comparative Historical and Typological Approach to the Middle Eastern State System
Type: Book
ISBN: 978-1-83753-122-6

Keywords

Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 525