Search results

1 – 10 of over 12000
Article
Publication date: 1 June 1995

Jan‐Kaung Fu

The performance of a spinningsecant‐ogive‐cylinder‐boattail projectile in thetransonic regime in terms of aerodynamic drag has been analyzed numericallyin this study. To obtain an…

Abstract

The performance of a spinning secant‐ogive‐cylinder‐boattail projectile in the transonic regime in terms of aerodynamic drag has been analyzed numerically in this study. To obtain an accurate prediction of the spinning effect on individual drag components and total drag of a projectile for the shell design, the implicit, diagonalied, symmetric Total Variation Diminishing (TVD) scheme, accompanied by a suitable grid, is employed to solve the thin‐layer axisymmetric Navier‐Stokes equations associated with the Baldwin‐Lomax turbulence model. The computed results show that, in comparison with the non‐spinning case, to increase the spin rate can result in increases in viscous drag and nose pressure drag, but can cause decreases in boattail drag and base drag. The variations of these drag components result in only a small (less than 5%) increase in total drag; thus the performance of the transonic projectiles is found to be insensitive to the spin rate.

Details

Engineering Computations, vol. 12 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2016

Mehdi Jamei and H Ghafouri

The purpose of this paper is to present an efficient improved version of Implicit Pressure-Explicit Saturation (IMPES) method for the solution of incompressible two-phase flow…

Abstract

Purpose

The purpose of this paper is to present an efficient improved version of Implicit Pressure-Explicit Saturation (IMPES) method for the solution of incompressible two-phase flow model based on the discontinuous Galerkin (DG) numerical scheme.

Design/methodology/approach

The governing equations, based on the wetting-phase pressure-saturation formulation, are discretized using various primal DG schemes. The authors use H(div) velocity reconstruction in Raviart-Thomas space (RT_0 and RT_1), the weighted average formulation, and the scaled penalties to improve the spatial discretization. It uses a new improved IMPES approach, by using the second-order explicit Total Variation Diminishing Runge-Kutta (TVD-RK) as temporal discretization of the saturation equation. The main purpose of this time stepping technique is to speed up computation without losing accuracy, thus to increase the efficiency of the method.

Findings

Utilizing pressure internal interpolation technique in the improved IMPES scheme can reduce CPU time. Combining the TVD property with a strong multi-dimensional slope limiter namely, modified Chavent-Jaffre leads to a non-oscillatory scheme even in coarse grids and highly heterogeneous porous media.

Research limitations/implications

The presented locally conservative scheme can be applied only in 2D incompressible two-phase flow modeling in non-deformable porous media. In addition, the capillary pressure discontinuity between two adjacent rock types assumed to be negligible.

Practical implications

The proposed numerical scheme can be efficiently used to model the incompressible two-phase flow in secondary recovery of petroleum reservoirs and tracing immiscible contamination in aquifers.

Originality/value

The paper describes a novel version of the DG two-phase flow which illustrates the effects of improvements in special discretization. Also the new improved IMPES approach used reduces the computation time. The non-oscillatory scheme is an efficient algorithm as it maintains accuracy and saves computation time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2000

Yihua Cao, Guocai Hu and Jifei Wang

Labyrinth seals have been used extensively in industrial production. Better prediction of the performance of a labyrinth seal requires that these mechanisms be understood. This…

Abstract

Labyrinth seals have been used extensively in industrial production. Better prediction of the performance of a labyrinth seal requires that these mechanisms be understood. This cannot be achieved except by investigating the flowfield details. Therefore, a total variation diminishing (TVD) finite volume scheme is applied to the Navier‐Stokes equations to obtain gas seal flowfield characteristics of axially staggered configuration in this paper. The calculation results here show the evolution process from unsteady flowfield characterization to steady flow pattern. Also, these new flowfield details may provide referable basis for understanding seal mechanisms.

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based totalvariationdiminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based totalvariationdiminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2020

Zhijian Duan and Gongnan Xie

The discontinuous Galerkin finite element method (DGFEM) is very suited for realizing high order resolution approximations on unstructured grids for calculating the hyperbolic…

Abstract

Purpose

The discontinuous Galerkin finite element method (DGFEM) is very suited for realizing high order resolution approximations on unstructured grids for calculating the hyperbolic conservation law. However, it requires a significant amount of computing resources. Therefore, this paper aims to investigate how to solve the Euler equations in parallel systems and improve the parallel performance.

Design/methodology/approach

Discontinuous Galerkin discretization is used for the compressible inviscid Euler equations. The multi-level domain decomposition strategy was used to deal with the computational grids and ensure the calculation load balancing. The total variation diminishing (TVD) Runge–Kutta (RK) scheme coupled with the multigrid strategy was employed to further improve parallel efficiency. Moreover, the Newton Block Gauss–Seidel (GS) method was adopted to accelerate convergence and improve the iteration efficiency.

Findings

Numerical experiments were implemented for the compressible inviscid flow problems around NACA0012 airfoil, over M6 wing and DLR-F6 configuration. The parallel acceleration is near to a linear convergence. The results indicate that the present parallel algorithm can reduce computational time significantly and allocate memory reasonably, which has high parallel efficiency and speedup, and it is well-suited to large-scale scientific computational problems on multiple instruction stream multiple data stream model.

Originality/value

The parallel DGFEM coupled with TVD RK and the Newton Block GS methods was presented for hyperbolic conservation law on unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 October 2019

Xuejuan Li and Ji-Huan He

The purpose of this paper is to develop an effective numerical algorithm for a gas-melt two-phase flow and use it to simulate a polymer melt filling process. Moreover, the…

Abstract

Purpose

The purpose of this paper is to develop an effective numerical algorithm for a gas-melt two-phase flow and use it to simulate a polymer melt filling process. Moreover, the suggested algorithm can deal with the moving interface and discontinuities of unknowns across the interface.

Design/methodology/approach

The algebraic sub-grid scales-variational multi-scale (ASGS-VMS) finite element method is used to solve the polymer melt filling process. Meanwhile, the time is discretized using the Crank–Nicolson-based split fractional step algorithm to reduce the computational time. The improved level set method is used to capture the melt front interface, and the related equations are discretized by the second-order Taylor–Galerkin scheme in space and the third-order total variation diminishing Runge–Kutta scheme in time.

Findings

The numerical method is validated by the benchmark problem. Moreover, the viscoelastic polymer melt filling process is investigated in a rectangular cavity. The front interface, pressure field and flow-induced stresses of polymer melt during the filling process are predicted. Overall, this paper presents a VMS method for polymer injection molding. The present numerical method is extremely suitable for two free surface problems.

Originality/value

For the first time ever, the ASGS-VMS finite element method is performed for the two-phase flow of polymer melt filling process, and an effective numerical method is designed to catch the moving surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2020

Carlos Enrique Torres-Aguilar, Jesús Xamán, Pedro Moreno-Bernal, Iván Hernández-Pérez, Ivett Zavala-Guillén and Irving Osiris Hernández-López

The purpose of this study is to propose a novel relaxation modified factor to accelerate the numerical solution of the radiative transfer equation (RTE) with several…

Abstract

Purpose

The purpose of this study is to propose a novel relaxation modified factor to accelerate the numerical solution of the radiative transfer equation (RTE) with several high-resolution total variation diminishing schemes. The methodology proposed is denoted as the X-factor method.

Design/methodology/approach

The X-factor method was compared with the technique deferred-correction (DC) for the calculations of a two-dimensional cavity with absorting-emiting-scatteting gray media using the discrete ordinates method. Four parameters were considered to evaluate: the absorption coefficient, the emissivity of boundary surface, the scattering albedo and under-relaxation factor.

Findings

The results showed the central processing unit (CPU) time of X-factor method was lower than DC. The reductions of CPU time with the X-factor method were observed from 0.6 to 75.4%.

Originality/value

The superiority of the X-factor method over DC was showed with the reduction of CPU time of the numerical solution of RTE for evaluated cases.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2005

P.R. Ess and C.B. Allen

A computational fluid dynamics code for the calculation of laminar hypersonic multi‐species gas flows in chemical non‐equilibrium in axisymmetric or two‐dimensional configuration…

1404

Abstract

Purpose

A computational fluid dynamics code for the calculation of laminar hypersonic multi‐species gas flows in chemical non‐equilibrium in axisymmetric or two‐dimensional configuration on shared and distributed memory parallel computers is presented and validated. The code is designed to work efficiently in combination with an automatic domain decompositioning method developed to facilitate efficient parallel computations of various flow problems.

Design/methodology/approach

The baseline implicit numerical method developed is the lower‐upper symmetric Gauss‐Seidel scheme, which is combined with a sub‐iteration scheme to achieve time‐accuracy up to third‐order. The spatial discretisation is based on Roe's flux‐difference splitting and various non‐linear flux limiters maintaining totalvariation diminishing properties and up to third‐order spatial accuracy in continuous regions of flow. The domain subdivision procedure is designed to work for single‐ and multi‐block domains without being constrained by the block boundaries, and an arbitrary number of processors used for the computation.

Findings

The code developed reproduces accurately various types of flows, e.g. flow over a flat plate, diffusive mixing and oscillating shock induced combustion around a projectile fired into premixed gas, and demonstrates close to linear scalability within limits of load imbalance.

Research limitations/implications

The cases considered are axisymmetric or two‐dimensional, and assume laminar flow. An extension to three‐dimensional turbulent flows is left for future work.

Originality/value

Results of a parallel computation, utilising a newly developed automatic domain subdivision procedure, for oscillating shock‐induced combustion around a projectile and various other cases are presented. The influence of entropy correction in Roe's flux‐difference splitting algorithm on diffusive mixing of multi‐species flows was examined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2003

R. Torrens and L.C. Wrobel

A novel numerical formulation of the two‐phase macroscopic balance equations governing the flow field in incompressible porous media is presented. The numerical model makes use of…

Abstract

A novel numerical formulation of the two‐phase macroscopic balance equations governing the flow field in incompressible porous media is presented. The numerical model makes use of the weighted average flux method and total variation diminishing flux limiting techniques, and results in a second‐order accurate scheme. A shock tube study was carried out to examine the interaction of a normal shock wave with a thin layer of porous, incompressible cellular ceramic foam. Particular attention was paid to the transmitted and reflected flow fields. The numerical model was used to simulate the experimental test cases, and their results compared with a view to validate the numerical model. A phenomenological model is proposed to explain the behaviour of the transmitted flow field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 April 2011

Huanxin Lai, Gailan Xing, Shantong Tu and Ling Zhao

The purpose of this paper is to present a pressure‐correction procedure for incompressible flows using unstructured meshes. A method of implementing high‐order spatial schemes on…

Abstract

Purpose

The purpose of this paper is to present a pressure‐correction procedure for incompressible flows using unstructured meshes. A method of implementing high‐order spatial schemes on unstructured grids was introduced.

Design/methodology/approach

The procedure used a collocated cell‐centered unstructured grid arrangement. In order to improve the accuracy of calculation, the widely used high‐order schemes for convection, developed for structured grids and in the form of either the normalized variable and space formulation (NVSF) or the total variation diminishing (TVD) flux limiters (FL), were introduced and implemented onto the unstructured grids. This implementation was carried out by constructing a local coordinate and introducing a virtual upstream node.

Findings

The procedure was validated by calculating the lid‐driven cavity flows which had benchmark numerical solutions. For comparison, these flows were also computed by a commercial package, the FLUENT. The results obtained by the present procedure agreed well with the benchmark solution although very coarse grids were used. For the FLUENT, however, worse agreements with the benchmark solutions were obtained although the grids used for computation were the same. These demonstrated the robustness of the presented numerical procedure.

Originality/value

With the present method, high‐order schemes in either NVSF or TVD FL forms for structured grids can be easily implemented onto unstructured grids. This provides more choices of high‐order schemes for calculating complex flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 12000