Search results

21 – 30 of over 6000
Article
Publication date: 8 November 2022

Hongli Xu and Chen Wang

This paper proposes a spoke-type fractional-slot concentrated windings (FSCW) permanent magnet (PM) machine for special vehicle driving systems to obtain higher torque and power…

Abstract

Purpose

This paper proposes a spoke-type fractional-slot concentrated windings (FSCW) permanent magnet (PM) machine for special vehicle driving systems to obtain higher torque and power density, high efficiency and wide field-weakening range. To enhance the efficiencies of multi-objective optimization processes, the respond surface (RS) method and black-hole (BH) algorithm are used.

Design/methodology/approach

The spoke-type FSCW PM machine is optimized to meet the requirements of the special vehicle driving system. The combination of the RS and BH algorithm is used to obtain high torque, low torque ripple and high efficiency.

Findings

The optimal spoke-type PM machine is obtained, and it has higher torque density, lower torque ripple, cogging torque and wider magnetic field weakening range. Finally, a 15-kW prototype machine is fabricated and tested to verify the results of the optimization method and finite-element analysis.

Originality/value

This paper designs a high torque density and efficiency spoke-type FSCW PM machine, which is superior for special vehicle driving systems. Meanwhile, the RS model combined with BH algorithm is applied to the field of electrical machine multi-objective optimal design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 February 2023

Kang Min, Fenglei Ni and Hong Liu

The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation…

Abstract

Purpose

The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation trajectory.

Design/methodology/approach

This paper presents an efficient and accurate F/T sensing method based on an excitation trajectory. First, the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity. Therefore, the sensing accuracy is improved. Then, the excitation trajectory with optimized poses is used for robot following and data acquisition. The data acquisition is not limited by poses and its time can be significantly shortened. Finally, the least squares method is used to identify parameters and sense contact forces/torques.

Findings

Experiments have been carried out on the self-developed robot manipulator. The results strongly demonstrate that the proposed approach is more efficient and accurate than the existing widely-adopted method. Furthermore, the data acquisition time can be shortened from more than 60 s to 3 s/20 s. Thus, the proposed approach is effective and suitable for fast-paced industrial applications.

Originality/value

The main contributions of this paper are as follows: the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity; and the excitation trajectory with optimized poses is used for robot following and data acquisition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 July 2013

Krzysztof Krykowski, Janusz Hetmańczyk and Dawid Makieła

When phase windings of brushless DC motor are switched, additional voltage drops across inductances of main circuit appear. These drops lead to, among other effects, increase of…

Abstract

Purpose

When phase windings of brushless DC motor are switched, additional voltage drops across inductances of main circuit appear. These drops lead to, among other effects, increase of torque‐speed curve slope. The discussed research has been aimed at working out a simple and precise method of identifying torque‐speed characteristic of PM BLDC motor. The elaborated method takes into account the influence of windings switching and motor inductances on motor torque‐speed characteristic. In order to assess the results, extensive test simulations of models implemented in Matlab/Simulink software have been run. Results of analysis and test simulations have been compared with lab test results of two real PM BLDC motors.

Design/methodology/approach

Analytical calculations take into consideration phenomena occurring during windings switch‐overs and impact of inductance on emerging voltage and rotational speed drops. It has been pointed out that on account of main circuit inductance, the average value of source current is less than average value of equivalent current generating electromagnetic torque. For analysis sake it has been assumed when windings are being switched‐over the current is kept constant; the motor parameters have also been assumed to be constant.

Findings

A novel and accurate method of determining torque‐speed characteristics of PM BLDC motor has been worked out. This method has been investigated with the help of motor computer models implemented in Matlab/Simulink software and the obtained results have been subsequently compared with results of laboratory tests of two commercially available PM BLDC motors.

Research limitations/implications

The object of the research was brushless DC motor with permanent magnet excitation. The impact of windings switch‐overs on torque‐speed curves of the motor has been analysed. Analytical method which makes it possible to determine torque‐speed curve of this motor very easily has been elaborated. Computer model of PM BLDC motor for Matlab/Simulink software has also been worked out. Extensive simulations helping to verify the proposed method have been run. Results of analysis and simulation tests have been verified by means of laboratory tests of two commercially available PM BLDC motors.

Practical implications

PM BLDC motors are used more and more widely. The new method of determining PM BLDC motors torque‐speed curves will facilitate analysis and design of drive systems utilizing these motors and will also speed up calculations.

Originality/value

The presented method of determining torque‐speed curves of PM BLDC motor is novel and much more precise than methods commonly used nowadays. Recognized methods usually neglect impact of inductance on motor properties.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 August 2014

Mohammad Esmaeili, Nathanaël Jarrassé, Wayne Dailey, Etienne Burdet and Domenico Campolo

The purpose of this paper is to propose a method to avoid hyperstaticity and eventually reduce the magnitude of undesired force/torques. The authors also study the influence of…

330

Abstract

Purpose

The purpose of this paper is to propose a method to avoid hyperstaticity and eventually reduce the magnitude of undesired force/torques. The authors also study the influence of hyperstaticity on human motor control during a redundant task.

Design/methodology/approach

Increasing the level of transparency of robotic interfaces is critical to haptic investigations and applications. This issue is particularly important to robotic structures that mimic the human counterpart's morphology and attach directly to the limb. Problems arise for complex joints such as the wrist, which cannot be accurately matched with a traditional mechanical joint. In such cases, mechanical differences between human and robotic joint cause hyperstaticity (i.e. over-constrained) which, coupled with kinematic misalignment, leads to uncontrolled force/torque at the joint. This paper focusses on the prono-supination (PS) degree of freedom of the forearm. The overall force and torque in the wrist PS rotation is quantified by means of a wrist robot.

Findings

A practical solution to avoid hyperstaticity and reduce the level of undesired force/torque in the wrist is presented. This technique is shown to reduce 75 percent of the force and 68 percent of the torque. It is also shown an over-constrained mechanism could alter human motor strategies.

Practical implications

The presented solution could be taken into account in the early phase of design of robots. It could also be applied to modify the fixation points of commercial robots in order to reduce the magnitude of reaction forces and avoid changes in motor strategy during the robotic therapy.

Originality/value

In this paper for the first time the authors study the effect of hyperstaticity on both reaction forces and human motor strategies.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 June 2021

Kazuaki Takahara, Katsuhiro Hirata, Noboru Niguchi, Hironori Suzuki and Hajime Ukaji

This paper aims to propose a new magnetic-geared motor (MGM) which can easily increase the gear ratio up to approximately several hundred. The operational principle is described…

Abstract

Purpose

This paper aims to propose a new magnetic-geared motor (MGM) which can easily increase the gear ratio up to approximately several hundred. The operational principle is described, and the relationship between the maximum transmission torques of each layer of the differential harmonic magnetic gear is investigated using a mathematical model and finite element method (FEM).

Design/methodology/approach

The operational principle and maximum transmission torque are described using a mathematical model. The FEM is used to investigate the operational principle and torque characteristics.

Findings

As the proposed model can realize a larger gear ratio than the conventional model, the torque constant can be approximately 100 times as large as that of the conventional model.

Research limitations/implications

The proposed and conventional models have the same shape stator, and it is not optimized.

Originality/value

The relationship between the maximum transmission torques of each layer is described, and this helps the design of a differential type MGM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 September 2018

Pichai Aree

An important characteristic of most induction motors is speed- or slip-torque curve. A simplified Kloss formula is widely used for describing speed-torque characteristic because…

186

Abstract

Purpose

An important characteristic of most induction motors is speed- or slip-torque curve. A simplified Kloss formula is widely used for describing speed-torque characteristic because it is fairly simple. Only two parameters related to break-down torque and break-down slip are regarded as input parameters. Because this simplified formula ignores an unknown parameter that is a ratio between Thevenin’s and rotor resistances, an accurate torque curve characteristic may not be fully obtained over an entire speed range. Moreover, the conventional Kloss formula does not offer a speed-torque curve calculation when motor’s supply voltages and frequencies are deviated from rated values. Hence, the purpose of this paper is to present an extension of Kloss formula, which allows a more precise estimation of speed-torque and speed-current curves of single-cage three-phase induction motors over a wide range of speeds at different motor’s operating voltages, frequencies and rotor-circuit resistances.

Design/methodology/approach

The analytical approach is mainly used for determining all key parameters in the Kloss formula using a known set of data such as rated torque, starting torque, break-down torque and rated speed, in which they can be obtained from motor’s manufacturer.

Findings

The speed-torque and speed-current curves taken from laboratory measurements are compared with those from the calculations. Good agreements between them are fully observed.

Originality/value

This analytical approach is useful in providing an accurate speed-torque and speed-current curves required for most steady-state analysis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2017

Fangwei Xie, Diancheng Wu, Yaowen Tong, Bing Zhang and Jie Zhu

The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and…

Abstract

Purpose

The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and transmitted torque between friction pairs of hydro-viscous clutch.

Design/methodology/approach

According to the working process of friction pairs of hydro-viscous clutch, mathematical models of hydrodynamic load capacity and torque transmitted by the oil film were built based on viscosity-temperature property. Then analytical solutions of pressure, flow, load capacity and transmitted torque were obtained; effects of central angle of oil groove zone and friction contact zone, oil film thickness, number of oil grooves on pressure, flow, load capacity and torque were studied theoretically.

Findings

The research found that the central angle of oil groove zone, number of oil grooves and oil groove depth have similar effects on flow, which means that with the increase of central angle, number or depth of oil grooves, the flow also increases; pressure in friction contact zone and oil groove zone drops along radial direction, whereas its value in oil groove zone is higher. With the increase of the central angle of oil groove zone, pressure in friction contact zone and friction contact zone rises, and the load capacity increases, whereas the transmitted torque drops. Number of oil grooves has little effect on load capacity. When the oil film thickness increases, its flow increases accordingly, whereas the pressure, load capacity and transmitted torque drops. Meanwhile, the transmitted torque decreases with the increase of number of oil grooves, whereas the oil groove depth nearly has no effects on transmitted torque.

Originality/value

In this paper, mathematical models of hydrodynamic load capacity and torque transmitted by oil film were built based on viscosity-temperature property in the working process of hydro-viscous clutch, and their analytical solutions were obtained; effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property were revealed. The research results are of great value to the theory development of hydro-viscous drive technology, the design of high-power hydro-viscous clutch and relative control strategy.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2016

Y. Guan, Z.Q. Zhu, I.A.A. Afinowi, J.C. Mipo and P. Farah

The purpose of this paper is to make a quantitative comparison between induction machine (IM) and interior permanent magnet machine (IPM) for electric vehicle applications, in…

Abstract

Purpose

The purpose of this paper is to make a quantitative comparison between induction machine (IM) and interior permanent magnet machine (IPM) for electric vehicle applications, in terms of electromagnetic performance and material cost.

Design/methodology/approach

The analysis of IM is based on an analytical method, which has been validated by test. The analysis of IPM is based on finite element analysis. The popular Toyota Prius 2010 IPM is adopted directly, and the IM is designed with the same stator outer diameter and stack length as Prius 2010 IPM for a fair comparison.

Findings

The torque capability of IM is lower than IPM for low electric loading and competitive to IPM for high electric loading. The maximum torque/power-speed characteristic of IM is competitive to IPM; while the rated torque/power-speed characteristic of IM is poorer than IPM. The power factor of IM is competitive and even better than IPM for high electric loading in low-speed region. The torque ripple of IM is comparable to IPM for high electric loading and much lower than IPM for low electric loading. The overall efficiency of IM is lower than IPM, and the maximum efficiency of copper squirrel cage IM is approximately 2-3 percent lower than IPM. The material cost of IM is about half of IPM when IM and IPM are designed with the same stator outer diameter and stack length.

Originality/value

The electromagnetic performances and material costs of IM and IPM are quantitatively compared and discussed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 November 2021

Amir Darjazini, Abolfazl Vahedi, Amin Nobahari and Saber Gharehseyed

Pulsating torques cause a number of problems in electrical machines, including mechanical vibrations, acoustic noise and the depreciation of mechanical equipment. In induction…

Abstract

Purpose

Pulsating torques cause a number of problems in electrical machines, including mechanical vibrations, acoustic noise and the depreciation of mechanical equipment. In induction motors, the slot skewing method is an effective way to solve these issues; however, it has some drawbacks such as output torque drop, stray loss intensification due to inter-bar currents and iron loss increment. Besides, slot skewing may not be practical in higher-rated induction motors. In this regard, this paper introduces a modified non-skewed rotor (MNSR) structure as a possible alternative to the skewed designs.

Design/methodology/approach

The proposed structure includes a two-segmented rotor with an intermediate ring between the rotor parts that are mounted on the shaft with a relative shift angle. Detailed information about the idea and structure of the MNSR as well as its manufacturing aspects will be presented in the second section of the paper. First, the working principle of the proposed design is described via analytical equations to provide an insight into the concept. The shifting angle will then be calculated by analyzing the harmonic contents of the electromagnetic torque. Finally, the validity of the analytical method will be verified by developing three-dimensional finite element models.

Findings

It is demonstrated that by using the proposed rotor structure, the torque ripple has been reduced to a satisfactory level without significantly affecting the mean torque, unlike the skewing method. Furthermore, the new method could avoid the disadvantages of the skewing method while enhancing other motor characteristics such as iron loss. Also, the total volume of the MNSR is equal to the initial design, and the mass and material differences are also negligible.

Originality/value

In this paper, a MNSR is introduced as a possible alternative to the skewed patterns. The study mainly focused on electromagnetic torque profile characteristics, i.e. the mean torque enhancement and the ripple reduction. The MNSR structure can be used for general purposes and high-performance applications, especially where excellent torque characteristics are required.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 May 2010

Drago Dolinar, Petar Ljušev, Gorazd Štumberger, Matjaž Dolinar and Daniel Roger

The purpose of this paper is to analyze the impact of magnetic saturation on the steady‐state operation of the induction motor (IM) drive in regard to rotor field‐oriented control…

Abstract

Purpose

The purpose of this paper is to analyze the impact of magnetic saturation on the steady‐state operation of the induction motor (IM) drive in regard to rotor field‐oriented control (RFOC). The aim of the presented two methods is to obtain the required steady‐state torque with minimal stator current, which thus reduces stator coper losses considerably.

Design/methodology/approach

The first method is based on an analytic calculation of the peak torque‐per‐ampere ratio curve of saturated IM. The torque characteristics obtained at a constant stator current are used to calculate that value of magnetizing current which gives the minimal stator current for the required load torque. The second method directly searches the minimal stator current for the required load torque. Experiments completely confirm the efficiency of the proposed selection of a magnetizing current reference.

Findings

Operation of the IM drive strongly depends on a proper selection of the rotor flux linkage reference value, the selection of which represents an additional degree of freedom in control design. Therefore, it can be used to optimize some of those drive features subjected to voltage and current constraints. The proposed calculation procedure is simple so that can be easily implemented in practically application. However, some additional IM data like magnetizing curve, inertia moment, and coefficient of viscous friction are necessary.

Originality/value

The substantial impact of saturation on the stead‐state torque characteristics of IM, determined for the constant stator current and the constant d‐axis stator current, is determined analytically and numerically.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

21 – 30 of over 6000