Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 26 August 2014

Stator voltage harmonics and unbalance compensation of the sensorless standalone doubly fed induction generator

Grzegorz Iwanski, Piotr Pura, Tomasz Łuszczyk and Mateusz Szypulski

Doubly fed induction generator (DFIG) is widely used in wind energy conversion systems and it can operate with other primary movers. The purpose of this paper is to focus…

HTML
PDF (3.5 MB)

Abstract

Purpose

Doubly fed induction generator (DFIG) is widely used in wind energy conversion systems and it can operate with other primary movers. The purpose of this paper is to focus on the standalone operation of DFIG which may expand the area of possible applications and increase capabilities of the generation system in terms of power quality.

Design/methodology/approach

Synthesis of the control method was preceded by analysis of mathematical model of the machine. The control method based on the negative sequence and high harmonics extraction has been developed and verified in the laboratory unit. Control of the fundamental frequency component uses neither rotor speed nor position sensors.

Findings

The original method allows to compensate negative sequence and high harmonics of the generated voltage. At the same time, due to the active filtering capability of the grid side converter, the stator phase current shape is close to sine wave. Thus, it is seen by the machine as a linear load, what eliminates the electromagnetic torque ripples.

Practical implications

The system and control method can be applied in variable speed generation systems, e.g. wind turbines or diesel engines operating in the standalone mode.

Originality/value

Although the selective compensation of negative sequence and harmonics are known in the literature, until now the methods have been verified for the system with a rotor position sensor. Moreover, the stator current feed-forward improving the transient properties, as well as results of transient states caused by the load step change, have not been proposed in publications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/COMPEL-04-2014-0083
ISSN: 0332-1649

Keywords

  • Renewable energy
  • Doubly fed induction machine
  • Nonlinear load
  • Standalone generator
  • Unbalanced load
  • Voltage control

Access
Only content I have access to
Only Open Access
Year
  • All dates (1)
Content type
  • Article (1)
1 – 1 of 1
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here