Search results

1 – 10 of 456
Article
Publication date: 20 January 2020

Li Wu, Xinxin Li, Tianmin Guan, Yong Chen and Chunwei Qi

The 3 D bioprinting technology is used to prepare the tissue engineering scaffold with precise structures for the cell proliferation and differentiation.

Abstract

Purpose

The 3 D bioprinting technology is used to prepare the tissue engineering scaffold with precise structures for the cell proliferation and differentiation.

Design/methodology/approach

According to the characteristics of the ideal tissue engineering scaffold, the microstructural design of the tissue engineering scaffold is carried out. The bioprinter is used to fabricate the tissue engineering scaffold with different structures and spacing sizes. Finally, the scaffold with good connectivity is achieved and used to cell PC12 culture.

Findings

The results show that the pore structure with the line spacing of 1 mm was the best for cell culture, and the survival rate of the inoculated cells PC12 is as high as 90%. The influence of the pore shape on the cell survival is not evidence.

Originality/value

This study shows that tissue engineering scaffolds prepared by 3 D bioprinting have graded structure for three-dimensional cell culture, which lays the foundation for the later detection of drug resistance.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

Additive manufacturing (AM) or solid freeform fabrication (SFF) technique is extensively used to produce intrinsic 3D structures with high accuracy. Its significant contributions in the field of tissue engineering (TE) have significantly increased in the recent years. TE is used to regenerate or repair impaired tissues which are caused by trauma, disease and injury in human body. There are a number of novel materials such as polymers, ceramics and composites, which possess immense potential for production of scaffolds. However, the major challenge is in developing those bioactive and patient-specific scaffolds, which have a required controlled design like pore architecture with good interconnectivity, optimized porosity and microstructure. Such design not only supports cell proliferation but also promotes good adhesion and differentiation. However, the traditional techniques fail to fulfill all the required specific properties in tissue scaffold. The purpose of this study is to report the review on AM techniques for the fabrication of TE scaffolds.

Design/methodology/approach

The present review paper provides a detailed analysis of the widely used AM techniques to construct tissue scaffolds using stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), binder jetting (BJ) and advanced or hybrid additive manufacturing methods.

Findings

Subsequently, this study also focuses on understanding the concepts of TE scaffolds and their characteristics, working principle of scaffolds fabrication process. Besides this, mechanical properties, characteristics of microstructure, in vitro and in vivo analysis of the fabricated scaffolds have also been discussed in detail.

Originality/value

The review paper highlights the way forward in the area of additive manufacturing applications in TE field by following a systematic review methodology.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 June 2020

Nataraj Poomathi, Sunpreet Singh, Chander Prakash, Arjun Subramanian, Rahul Sahay, Amutha Cinappan and Seeram Ramakrishna

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical…

1407

Abstract

Purpose

In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine).

Design/methodology/approach

This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript.

Findings

3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications.

Originality/value

This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 2005

S. Khalil, J. Nam and W. Sun

To introduce recent research and development of biopolymer deposition for freeform fabrication of three‐dimensional tissue scaffolds that is capable of depositing bioactive…

8936

Abstract

Purpose

To introduce recent research and development of biopolymer deposition for freeform fabrication of three‐dimensional tissue scaffolds that is capable of depositing bioactive ingredients.

Design/methodology/approach

A multi‐nozzle biopolymer deposition system is developed, which is capable of extruding biopolymer solutions and living cells for freeform construction of 3D tissue scaffolds. The deposition process is biocompatible and occurs at room temperature and low pressures to reduce damage to cells. In contrast with other systems, this system is capable of, simultaneously with scaffold construction, depositing controlled amount of cells, growth factors, or other bioactive compounds with precise spatial position to form complex cell‐seeded tissue constructs. The examples shown are based on sodium alginate solutions and poly‐ε‐caprolactone (PCL). Studies of the biopolymer deposition feasibility, structural formability, and different material deposition through a multi‐nozzle heterogeneous system are conducted and presented.

Findings

Provides information about the biopolymer deposition using different nozzle systems, the relations of process parameters on deposition flow rate and scaffold structural formability. Three‐dimensional alginate‐based scaffolds and scaffold embedded with living cells can be freeform constructed according to various design configurations at room temperature without using toxic materials.

Research limitations/implications

Other biopolymers may also be studied for structure formation. Studying cell viability and cellular tissue engineering behavior of the scaffolds after the cell deposition should be further investigated.

Practical implications

A very useful and effective tool for construction of bioactive scaffolds for tissue engineering applications based on a multi‐nozzle biopolymer deposition.

Originality/value

This paper describes a novel process and manufacturing system for fabrication of bioactive tissue scaffolds, automatic cell loading, and heterogeneous tissue constructs for emerging regenerative medicine.

Details

Rapid Prototyping Journal, vol. 11 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2003

Suman Das, Scott J. Hollister, Colleen Flanagan, Adebisi Adewunmi, Karlin Bark, Cindy Chen, Krishnan Ramaswamy, Daniel Rose and Erwin Widjaja

The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design…

2965

Abstract

The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design methods. When fully developed, such techniques are expected to enable the fabrication of tissue engineering scaffolds endowed with functionally graded material composition and porosity exhibiting sharp or smooth gradients. Results of bio‐compatibility and in vivo implantation are presented.

Details

Rapid Prototyping Journal, vol. 9 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2015

Ramakrishna Vasireddi and Bikramjit Basu

The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques…

Abstract

Purpose

The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques.

Design/methodology/approach

The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering.

Findings

The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries.

Originality/value

One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone–cartilage interface.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 January 2012

Weiguo Bian, Dichen Li, Qin Lian, Xiang Li, Weijie Zhang, Kunzheng Wang and Zhongmin Jin

The purpose of this paper is to fabricate and characterize osteochondral beta‐tricalcium phosphate/collagen scaffold with bio‐inspired design by ceramic stereolithography (CSL…

2117

Abstract

Purpose

The purpose of this paper is to fabricate and characterize osteochondral beta‐tricalcium phosphate/collagen scaffold with bio‐inspired design by ceramic stereolithography (CSL) and gel casting.

Design/methodology/approach

Histological analysis was applied to explore the morphological characteristics of the transitional structure between the bone and the cartilage. The acquired data were used to design biomimetic biphasic scaffolds, which include the bone phase, cartilage phase, and their transitional structure. The engineered scaffolds were fabricated from β‐TCP‐collagen by CSL and gel casting. The cartilage phase was added to the ceramic phase by gel‐casting and freeze drying.

Findings

The resulting ceramic scaffolds were composed of a bone phase with the following properties: 700‐900 μm pore size, 200‐500 μm interconnected pores size, 50‐65 percent porosity, fully interconnected, ∼12 Mpa compressive strength. A suitable binding force between cartilage phase and ceramic phase was achieved by physical locking that was created by the biomimetic transitional structure. Cellular evaluation showed satisfactory results.

Research limitations/implications

This study is the first try to apply CSL to fabricate biological implants with β‐TCP and type‐I collagen. There are still some defects in the composition of the slurry and the fabrication process.

Practical implications

This strategy of osteochondral scaffold fabrication can be implemented to construct an osteochondral complex that is similar to native tissue.

Originality/value

The CSL technique is highly accurate, as well as biologically secure, when fabricating ceramic tissue engineering scaffolds and may be a promising method to construct hard tissue with delicate structures. The present strategy enhances the versatility of scaffold fabrication by RP.

Details

Rapid Prototyping Journal, vol. 18 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 May 2023

Adib Bin Rashid, Abu Saleh Md. Nakib Uddin, Fahima Akter Azrin, Khondker Safin Kaosar Saad and Md Enamul Hoque

The main objective of this paper is to illustrate an analytical view of different methods of 3D bioprinting, variations, formulations and characteristics of biomaterials. This…

Abstract

Purpose

The main objective of this paper is to illustrate an analytical view of different methods of 3D bioprinting, variations, formulations and characteristics of biomaterials. This review also aims to discover all the areas of applications and scopes of further improvement of 3D bioprinters in this era of the Fourth Industrial Revolution.

Design/methodology/approach

This paper reviewed a number of papers that carried evaluations of different 3D bioprinting methods with different biomaterials, using different pumps to print 3D scaffolds, living cells, tissue and organs. All the papers and articles are collected from different journals and conference papers from 2014 to 2022.

Findings

This paper briefly explains how the concept of a 3D bioprinter was developed from a 3D printer and how it affects the biomedical field and helps to recover the lack of organ donors. It also gives a clear explanation of three basic processes and different strategies of these processes and the criteria of biomaterial selection. This paper gives insights into how 3D bioprinters can be assisted with machine learning to increase their scope of application.

Research limitations/implications

The chosen research approach may limit the generalizability of the research findings. As a result, researchers are encouraged to test the proposed hypotheses further.

Practical implications

This paper includes implications for developing 3D bioprinters, developing biomaterials and increasing the printability of 3D bioprinters.

Originality/value

This paper addresses an identified need by investigating how to enable 3D bioprinting performance.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 2004

F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri and A. Lau

Successes in scaffold guided tissue engineering require scaffolds to have specific macroscopic geometries and internal architectures to provide the needed biological and…

3643

Abstract

Successes in scaffold guided tissue engineering require scaffolds to have specific macroscopic geometries and internal architectures to provide the needed biological and biophysical functions. Freeform fabrication provides an effective process tool to manufacture many advanced scaffolds with designed properties. This paper reports our recent study on using a novel precision extruding deposition (PED) process technique to directly fabricate cellular poly‐ε_rm;‐caprolactone (PCL) scaffolds. Scaffolds with a controlled pore size of 250 μm and designed structural orientations were fabricated.

Details

Rapid Prototyping Journal, vol. 10 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2015

Yan Li, Dichen Li, Bingheng Lu, Dajing Gao and Jack Zhou

The purpose of this paper is to review the current status of additive manufacturing (AM) used for tissue engineering (TE) scaffold. AM processes are identified as an effective…

1106

Abstract

Purpose

The purpose of this paper is to review the current status of additive manufacturing (AM) used for tissue engineering (TE) scaffold. AM processes are identified as an effective method for fabricating geometrically complex objects directly from computer models or three-dimensional digital representations. The use of AM technologies in the field of TE has grown rapidly in the past 10 years.

Design/methodology/approach

The processes, materials, precision, applications of different AM technologies and their modified versions used for TE scaffold are presented. Additionally, future directions of AM used for TE scaffold are also discussed.

Findings

There are two principal routes for the fabrication of scaffolds by AM: direct and indirect routes. According to the working principle, the AM technologies used for TE scaffold can be generally classified into: laser-based; nozzle-based; and hybrid. Although a number of materials and fabrication techniques have been developed, each AM technique is a process based on the unique property of the raw materials applied. The fabrication of TE scaffolds faces a variety of challenges, such as expanding the range of materials, improving precision and adapting to complex scaffold structures.

Originality/value

This review presents the latest research regarding AM used for TE scaffold. The information available in this paper helps researchers, scholars and graduate students to get a quick overview on the recent research of AM used for TE scaffold and identify new research directions for AM in TE.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 456