Search results

1 – 10 of over 6000
Article
Publication date: 1 June 2006

Murat Tunç, Ünal Çamdali, Cem Parmaksizoğlu and Sermet Çikrikçi

Cancer is the foremost disease that causes death. The objective of hyperthermia in cancer therapy is to raise the temperature of cancerous tissue above a therapeutic value while…

2825

Abstract

Purpose

Cancer is the foremost disease that causes death. The objective of hyperthermia in cancer therapy is to raise the temperature of cancerous tissue above a therapeutic value while maintaining the surrounding normal tissue at sublethal temperature values in cases where surgical intervention is dangerous or impossible. The malignant tissue is heated up to 42°C in the treatment. In this method, the unaffected tissues are aimed to have minimum damage, while the affected ones are destroyed. Therefore, it is very important for the optimization of the method to know the temperature profiles in both tissues. Accurately estimating the tissue temperatures has been a very important issue for tumor hyperthermia treatment planning. This paper, proposes to theoretically predict the temperature response of the biological tissues subject to external EM heating by using the space‐dependent blood perfusion term in Pennes bio‐heat equation.

Design/methodology/approach

The bio‐heat transfer equation is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method. In this study, one dimensional bio‐heat transfer equation is solved by flex‐PDE finite element method.

Findings

In this study, the bio‐heat transfer equation is solved for variable blood perfusion values and the temperature field resulting after a hyperthermia treatment is obtained. Homogeneous, non‐homogeneous tissue and constant, variable blood perfusion rates are considered in this study to display the temperature fields in the biological material exposed to externally induced electromagnetic irradiation.

Originality/value

Temperature‐dependent tissue thermophysical properties have been used and the Pennes equation is solved by FEM analysis. Variable blood perfusion and heat generation values have been used in calculations for healthy tissue and tissue with tumor.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 February 2024

Borja López-Alonso, Pablo Briz, Hector Sarnago, José M. Burdio and Oscar Lucia

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

26

Abstract

Purpose

This paper aims to study the feasibility of proposed method to focus the electroporation ablation by mean of multi-output multi-electrode system.

Design/methodology/approach

The proposed method has been developed based on a previously designed electroporation system, which has the capabilities to modify the electric field distribution in real time, and to estimate the impedance distribution. Taking into consideration the features of the system and biological tissues, the problem has been addressed in three phases: modeling, control system design and simulation testing. In the first phase, a finite element analysis model has been proposed to reproduce the electric field distribution within the hepatic tissue, based on the characteristics of the electroporation system. Then, a control strategy has been proposed with the goal of ensuring complete ablation while minimizing the affected volume of healthy tissue. Finally, to check the feasibility of the proposal, several representative cases have been simulated, and the results have been compared with those obtained by a traditional system.

Findings

The proposed method achieves the proposed goal, as part of a complex electroporation system designed to improve the targeting, effectiveness and control of electroporation treatments and serve to demonstrate the feasibility of developing new electroporation systems capable of adapting to changes in the preplanning of the treatment in real-time.

Originality/value

The work presents a thorough study of control method to multi-output multi-electrode electroporation system by mean of a rigorous numerical simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 11 December 2007

Duncan Wilson

Debates regarding patient claims to extant tissue samples are often cited as beginning with the infamous US case of John Moore vs. the Regents of the University of California…

Abstract

Debates regarding patient claims to extant tissue samples are often cited as beginning with the infamous US case of John Moore vs. the Regents of the University of California (1984–1990) – where the plaintiff unsuccessfully tried to claim title in a cell line derived from his excised spleen. Following the 1990 Supreme Court verdict, the issue of patient property in excised tissue was held by certain bioethicists as the ethical problem inhering in biomedical research from the 1980s onward: encompassing debates about a newly-avaricious biotechnology, consent, autonomy and identity. I show here that the concept of patient property was first mooted during the 1970s, some 10 years before Moore, as a response to US-based criticism of the use of foetal and human tissues in research. Rather than representing a struggle between an avaricious science and misled patients, it evolved as a result of debates between philosophers, lawyers, scientists and members of the public, amidst broader debates regarding human experimentation and abortion. Moreover, the first person to assert a patient's right to their own, or their family's tissue, in a legal arena was a scientist. This article attempts to investigate, through the evolution of ownership debates, how bioethicists and scientists themselves construct what counts as ‘public opinion’.

Details

Bioethical Issues, Sociological Perspectives
Type: Book
ISBN: 978-0-7623-1438-6

Article
Publication date: 1 June 2003

Kirstin Goldring

Abstract

Details

Working with Older People, vol. 7 no. 2
Type: Research Article
ISSN: 1366-3666

Article
Publication date: 12 April 2022

Zhuoqi Cheng, Jiale He, Pengjie Lin, Min He, Jing Guo, Xinwei Chen, Shuting Cai and Xiaoming Xiong

The purpose of this paper is to design a smart handheld device with force regulating function, which demonstrates the concept of patient-specialized tools.

Abstract

Purpose

The purpose of this paper is to design a smart handheld device with force regulating function, which demonstrates the concept of patient-specialized tools.

Design/methodology/approach

This handheld device integrates an electrical bioimpedance (EBI) sensor for tissue measurement and a constant force regulation mechanism for ensuring stable tool–tissue contact. Particular focuses in this study are on the design of the constant force regulation mechanism whose design process is through genetic algorithm optimization and finite element simulation. In addition, the output force can be changed to the desired value by adjusting the cross-sectional area of the generated spring.

Findings

The following two specific applications based on ex vivo tissues are used for evaluating the designed device. One is in terms of safety of interaction with delicate tissue while the other is for compensating involuntary tissue motion. The results of both examples show that the handheld device is able to provide an output force with a small standard deviation.

Originality/value

In this paper, a handheld device with force regulation mechanism is designed for specific patients based on the genetic algorithm optimization and finite element simulation. The device can maintain a steady and safe interaction force during the EBI measurement on fragile tissues or moving tissues, to improve the sensing accuracy and to avoid tissue damage. Such functions of the proposed device are evaluated through a series of experiments and the device is demonstrated to be effective.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 June 2009

Francisco J. Veredas, Héctor Mesa and Laura Morente

Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure…

Abstract

Purpose

Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure ulcers involve high costs for sanitary systems. Accurate wound evaluation is a critical task to optimize the efficacy of treatments and health‐care. Clinicians evaluate the pressure ulcers by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. The purpose of this paper is to use a hybrid learning approach based on neural and Bayesian networks to design a computational system to automatic tissue identification in wound images.

Design/methodology/approach

A mean shift procedure and a region‐growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multi‐layer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes determined by clinical experts. This training procedure is driven by a k‐fold cross‐validation method. Finally, a Bayesian committee machine is formed by training a Bayesian network to combine the classifications of the k neural networks (NNs).

Findings

The authors outcomes show high efficiency rates from a two‐stage cascade approach to tissue identification. Giving a non‐homogeneous distribution of pattern classes, this hybrid approach has shown an additional advantage of increasing the classification efficiency when classifying patterns with relative low frequencies.

Practical implications

The methodology and results presented in this paper could have important implications to the field of clinical pressure ulcer evaluation and diagnosis.

Originality/value

The novelty associated with this work is the use of a hybrid approach consisting of NNs and Bayesian classifiers which are combined to increase the performance of a pattern recognition task applied to the real clinical problem of tissue detection under non‐controlled illumination conditions.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 26 June 2019

Michal Frivaldsky, Miroslav Pavelek, Pavol Spanik, Dagmar Faktorova and Gabriela Spanikova

The purpose of this paper is to study the performance of the approximated model of biological tissue for development of complex 3 D models. The comparison of results from the…

Abstract

Purpose

The purpose of this paper is to study the performance of the approximated model of biological tissue for development of complex 3 D models. The comparison of results from the complex model of liver tissue and results from the approximated model is provided to validate the proposed approximation method.

Design/methodology/approach

The proposed model of hepatic tissue (respecting its heterogeneous character up to the microstructure of hepatic lobules) is used for analysis of current field distribution within this tissue. Initially, the complex model of tissue structure (respecting the heterogenous structure) is presented, considering its complicated structure. Consequently, the procedure for the approximation of a complex model is being described. The main motivation is the need for simple, fast and accurate simulation model, which can be consequently used within more complex modeling of human organs for investigation of negative impacts of electrosurgical equipment on heterogenic tissue structure. For these purposes, the complex and approximated model are mutually compared and evaluated.

Findings

The obtained results are exploitable for the analysis of the probability of injury formation in sensitive tissue structures, and the approximated model shall serve for optimization of complex and time-consuming analyses.

Research limitations/implications

Research limitations include development of precise and fast electro-magnetic simulation model of biological tissue.

Practical implications

Practical implications is focused on the optimization processes of the electro-surgical procedures.

Originality/value

The originality of the paper concerns the approximation method of organic tissue modeling.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2021

Huichao Wang, Qin Lian, Dichen Li, Chenghong Li, Tingze Zhao and Jin Liang

Reconstructing multi-layer tissue structure using cell printing to repairing complex tissue defect is a challenging task, especially using in situ bioprinting. This study aims to…

467

Abstract

Purpose

Reconstructing multi-layer tissue structure using cell printing to repairing complex tissue defect is a challenging task, especially using in situ bioprinting. This study aims to propose a method of in situ bioprinting multi-tissue layering and path planning for complex skin and soft tissue defects.

Design/methodology/approach

The scanned three-dimensional (3D) point cloud of the skin and soft tissue defect is taken as the input data, the depth value of the defect is then calculated using a two-step grid division method, and the tissue layer is judged according to the depth value. Then, the surface layering and path planning in the normal direction are performed for different tissue layers to achieve precise tissue layering filling of complex skin soft tissue defects.

Findings

The two-step grid method can accurately calculate the depth of skin and soft tissue defects and judge the tissue layer accordingly. In the in situ bioprinting experiment of the defect model, the defect can be completely closed. The defect can be reconstructed in situ, and the reconstructed structure is basically the same as the original skin tissue structure, proving the feasibility of the proposed method.

Originality/value

This study proposes an in situ bioprinting multi-tissue layering and path planning method for complex skin and soft tissue defects, which can directly convert the scanned 3D point cloud into a multi-tissue in situ bioprinting path. The printed result has a similar structure to that of the original skin tissue, which can make cells or growth factors act on the corresponding tissue layer targets.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 July 2019

Bin Chen, Yibo Zhao and Dong Li

This paper aims to understand the laser–tissue interaction mechanism during ophthalmic laser surgeries through numerical analysis. The influence of laser parameters and the…

Abstract

Purpose

This paper aims to understand the laser–tissue interaction mechanism during ophthalmic laser surgeries through numerical analysis. The influence of laser parameters and the multipulse technique were investigated.

Design/methodology/approach

The ocular fundus was simplified as a multilayered homogenous medium model. Afterward, the multilayer Monte Carlo method was used to simulate the propagation and energy deposition of laser light, and a local thermal non-equilibrium two-temperature model was established to simulate the temperature variation of chromophores and surrounding tissue with different laser wavelength.

Findings

Through the model, the selective heating of chromophore (melanin and blood vessels) was clearly illustrated: 1) neglecting the laser energy absorbance by blood in the traditional model will cause significant errors in temperature calculation; 2) the non-thermal equilibrium heat transfer model was needed to obtain an accurate description of the thermal process when the dimensionless pulse width (tp*) is <105. For 532 nm Argon laser, the optimize tp* is around 105 and the appropriate energy density is 5 J/cm2; 3) multipulse technique makes the energy more concentrated within the melanin, thereby reducing the thermal damage in surrounding tissue, with most appropriate pulse number and duty cycle is 10 and 1/10.

Originality/value

Taking the blood absorption into account, the different temperature variations of melanin/vessels and surrounding tissue caused by the selective photo-thermolysis were simulated successfully. By understanding the mechanism of laser therapy, laser parameters and multipulse technique are suggested to improve the clinical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2012

Carlos L. Antunes, Tony Richard O. Almeida and Nélia Raposeiro

Cholangiocarcinoma is an adenocarcinoma of the bile ducts which drain bile from the liver into the small intestine. Unfortunately, most patients are diagnosed at an advanced stage…

Abstract

Purpose

Cholangiocarcinoma is an adenocarcinoma of the bile ducts which drain bile from the liver into the small intestine. Unfortunately, most patients are diagnosed at an advanced stage of the disease with almost no chances for surgery, the only potentially curative treatment. As nitinol stents can be used to reduce stricture problems of the bile duct, these can be also considered as potential electrodes for hyperthermia treatments. Previous works show that, in fact, these metallic stents might be used as part of a feasible solution for delivering radiofrequency (RF) energy into a tumor located in a hollow organ to destroy the tumor tissue. However, the tissue lesion induced is not completely uniform due to convective heat transfer associated to the blood flow in the nearby vessels. The purpose of this paper is to study the use of saline solution for modifying the electrical conductivity of the tissue in order to obtain a more uniform lesion.

Design/methodology/approach

A numerical analysis using finite element method on a simplified model of the porta hepatis is performed. The tumor tissue is divided in three sections and simulations were performed considering a higher electrical conductivity in the middle section of the tumor, imitating the presence of a saline solution in this part of the tissue.

Findings

Results show that it is possible to obtain a more regular volume, by the way the tumor tissue is preferentially heated, although there are still some risks on exceeding the dimension of the bile duct.

Originality/value

This study presents the numerical analysis of a saline‐enhanced RF tissue thermoablation of a cholangiocarcinoma considering a stent‐based electrode. Results point to the possibility of obtaining a more regular volume of damaged tissue in order to heat and preferentially destroy the tumor tissue.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 6000