Search results

1 – 10 of 949
Article
Publication date: 1 March 1997

Zhiyue Lin

Provides an introduction to the field of time‐frequency analysis by reviewing four important and popular used time‐frequency analysis methods with focus on the principles and…

1017

Abstract

Provides an introduction to the field of time‐frequency analysis by reviewing four important and popular used time‐frequency analysis methods with focus on the principles and implementation. The basic idea of time‐frequency analysis is to understand and describe situations where the frequency content of a signal is changing in time. Although time‐frequency analysis had its origin almost 50 years ago, significant advances have occurred in the past 15 years or so. Recently, the time‐frequency representation has received considerable attention as a powerful tool for analysing a variety of signals and systems.

Details

Sensor Review, vol. 17 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1997

P.I.J. Keeton and F.S. Schlindwein

Provides an introduction into wavelets and illustrates their application with two examples. The wavelet transform provides the analyst with a scaleable time‐frequency

1028

Abstract

Provides an introduction into wavelets and illustrates their application with two examples. The wavelet transform provides the analyst with a scaleable time‐frequency representation of the signal, which may uncover details not evidenced by conventional signal processing techniques. The signals used in this paper are Doppler ultrasound recordings of blood flow velocity taken from the internal carotid artery and the femoral artery. Shows how wavelets can be used as an alternative signal processing tool to the short time Fourier transform for the extraction of the time‐frequency distribution of Doppler ultrasound signals. Implements wavelet‐based adaptive filtering for the extraction of maximum blood velocity envelopes in the post processing of Doppler signals.

Details

Sensor Review, vol. 17 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 February 2019

Nadia Nurnajihah M. Nasir, Salvinder Singh, Shahrum Abdullah and Sallehuddin Mohamed Haris

The purpose of this paper is to present the application of Hilbert–Huang transform (HHT) for fatigue damage feature characterisation in the time–frequency domain based on strain…

Abstract

Purpose

The purpose of this paper is to present the application of Hilbert–Huang transform (HHT) for fatigue damage feature characterisation in the time–frequency domain based on strain signals obtained from the automotive coil springs.

Design/methodology/approach

HHT was employed to detect the temporary changes in frequency characteristics of the vibration response of the signals. The extraction successfully reduced the length of the original signal to 40 per cent, whereas the fatigue damage was retained. The analysis process for this work is divided into three stages: signal characterisation with the application of fatigue data editing (FDE) for fatigue life assessment, empirical mode decomposition with Hilbert transform, an energy–time–frequency distribution analysis of each intrinsic mode function (IMF).

Findings

The edited signal had a time length of 72.5 s, which was 40 per cent lower than the original signal. Both signals were retained statistically with close mean, root-mean-square and kurtosis value. FDE improved the fatigue life, and the extraction did not affect the content and behaviour of the original signal because the editing technique only removed the minimal fatigue damage potential. HHT helped to remove unnecessary noise in the recorded signals. EMD produced sets of IMFs that indicated the differences between the original signal and mean of the signal to produce new components. The low-frequency energy was expected to cause large damage, whereas the high-frequency energy will cause small damage.

Originality/value

HHT and EMD can be used in the strain data signal analysis of the automotive component of a suspension system. This is to improve the fatigue life, where the extraction did not affect the content and behaviour of the original signal because the editing technique only removed the minimal fatigue damage potential.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 June 2007

Hongyu Yang, Joseph Mathew and Lin Ma

The purpose of this article is to present a new application of pursuit‐based analysis for diagnosing rolling element bearing faults.

Abstract

Purpose

The purpose of this article is to present a new application of pursuit‐based analysis for diagnosing rolling element bearing faults.

Design/methodology/approach

Intelligent diagnosis of rolling element bearing faults in rotating machinery involves the procedure of feature extraction using modern signal processing techniques and artificial intelligence technique‐based fault detection and identification. This paper presents a comparative study of both the basis and matching pursuits when applied to fault diagnosis of rolling element bearings using vibration analysis.

Findings

Fault features were extracted from vibration acceleration signals and subsequently fed to a feed forward neural network (FFNN) for classification. The classification rate and mean square error (MSE) were calculated to evaluate the performance of the intelligent diagnostic procedure. Results from the basis pursuit fault diagnosis procedure were compared with the classification result of a matching pursuit feature‐based diagnostic procedure. The comparison clearly illustrates that basis pursuit feature‐based fault diagnosis is significantly more accurate than matching pursuit feature‐based fault diagnosis in detecting these faults.

Practical implications

Intelligent diagnosis can reduce the reliance on experienced personnel to make expert judgements on the state of the integrity of machines. The proposed method has the potential to be extensively applied in various industrial scenarios, although this application concerned rolling element bearings only. The principles of the application are directly translatable to other parts of complex machinery.

Originality/value

This work presents a novel intelligent diagnosis strategy using pursuit features and feed forward neural networks. The value of the work is to ease the burden of making decisions on the integrity of plant through a manual program in condition monitoring and diagnostics particularly of complex pieces of plant.

Details

Journal of Quality in Maintenance Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 June 2021

Anshul Sharma, Pardeep Kumar, Hemant Kumar Vinayak, Suresh Kumar Walia and Raj Kumar Patel

This study aims to include the diagnosis of an old concrete deck steel truss rural road bridge in the damaged and retrofitted state through vibration response signals.

Abstract

Purpose

This study aims to include the diagnosis of an old concrete deck steel truss rural road bridge in the damaged and retrofitted state through vibration response signals.

Design/methodology/approach

The analysis of the vibration response signals is performed in time and time-frequency domains using statistical features-root mean square, impulse factor, crest factor, kurtosis, peak2peak and Stockwell transform. The proposed methodology uses the Hilbert transform in combination with spectral kurtosis and bandpass filtering technique for obtaining robust outcomes of modal frequencies.

Findings

The absence or low amplitude of considered mode shape frequencies is observed both before and after retrofitting of bridge indicates the deficient nodes. The kurtosis feature among all statistical approaches is able to reflect significant variation in the amplitude of different nodes of the bridge. The Stockwell transform showed better resolution of present modal frequencies but due to the yield of additional frequency peaks in the vicinity of the first three analytical modal frequencies no decisive conclusions are achieved. The methodology shows promising outcomes in eliminating noise and visualizing distinct modal frequencies of a steel truss bridge.

Social implications

The findings of the present study help in analyzing noisy vibration signals obtained from various structures (civil or mechanical) and determine vulnerable locations of the structure using mode shape frequencies.

Originality/value

The literature review gave an insight into few experimental investigations related to the combined application of Hilbert transform with spectral kurtosis and bandpass filtering technique in determining mode frequencies of a steel truss bridge.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 May 2021

Anshul Sharma, Pardeep Kumar, Hemant Kumar Vinayak, Raj Kumar Patel and Suresh Kumar Walia

This study aims to perform the experimental work on a laboratory-constructed steel truss bridge model on which hammer blows are applied for excitation. The vibration response…

Abstract

Purpose

This study aims to perform the experimental work on a laboratory-constructed steel truss bridge model on which hammer blows are applied for excitation. The vibration response signals of the bridge structure are collected using sensors placed at different nodes. The different damaged states such as no damage, single damage, double damage and triple damage are introduced by cutting members of the bridge. The masked noise with recorded vibration responses generates challenge to properly analyze the health of bridge structure.

Design/methodology/approach

The analytical modal properties are obtained from finite element model (FEM) developed using SAP2000 software. The response signals are analyzed in frequency domain by power spectrum and in time-frequency domain using spectrogram and Stockwell transform. Various low pass signal-filtering techniques such as variational filter, lowpass sparse banded (AB) filter and Savitzky–Golay (SG) differentiator filter are also applied to refine vibration signals. The proposed methodology further comprises application of Hilbert transform in combination with MUSIC and ESPRIT techniques.

Findings

The outcomes of SG filter provided the denoised signals using appropriate polynomial degree with proper selected window length. However, certain unwanted frequency peaks still appeared in the outcomes of SG filter. The SG-filtered signals are further analyzed using fused methodology of Hilbert transform-ESPRIT, which shows high accuracy in identifying modal frequencies at different states of the steel truss bridge.

Originality/value

The sequence of proposed methodology for denoising vibration response signals using SG filter with Hilbert transform-ESPRIT is a novel approach. The outcomes of proposed methodology are much refined and take less computational time.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 December 2003

Y. Zhan, V. Makis and A.K.S. Jardine

Due to the non‐stationarity of vibration signals resulting from either varying operating conditions or natural deterioration of machinery, both the frequency components and their…

1531

Abstract

Due to the non‐stationarity of vibration signals resulting from either varying operating conditions or natural deterioration of machinery, both the frequency components and their magnitudes vary with time. However, little research has been done on the parameter estimation of time‐varying multivariate time series models based on adaptive filtering theory for condition‐based maintenance purposes. This paper proposes a state‐space model of non‐stationary multivariate vibration signals for the online estimation of the state of rotating machinery using a modified extended Kalman filtering algorithm and spectral analysis in the time‐frequency domain. Adaptability and spectral resolution capability of the model have been tested by using simulated vibration signal with abrupt changes and time‐varying spectral content. The implementation of this model to detect machinery deterioration under varying operating conditions for condition‐based maintenance purposes has been conducted by using real gearbox vibration monitoring signals. Experimental results demonstrate that the proposed model is able to quickly detect the actual state of the rotating machinery even under highly non‐stationary conditions with abrupt changes and yield accurate spectral information for an early warning of incipient fault in rotating machinery diagnosis. This is achieved through combination with a change detection statistic in bi‐spectral domain.

Details

Journal of Quality in Maintenance Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 2 January 2009

Zbigniew Leonowicz, Tadeusz Lobos and Krzysztof Wozniak

The purpose of this paper is to compare the accuracy of tracking the amplitude and frequency changes of non‐stationary electric signals.

Abstract

Purpose

The purpose of this paper is to compare the accuracy of tracking the amplitude and frequency changes of non‐stationary electric signals.

Design/methodology/approach

Short‐time fourier transform (STFT) and S‐transform algorithms were applied to analyze non‐stationary signals originating from switching of capacitor banks in a power system.

Findings

The S‐transform showed possibilities of sharp localization of the basic component, and allowed improvement of tracking dynamism the transient components in comparison to STFT.

Practical implications

S‐transform is a better tool for the analysis of non‐stationary waveforms in power systems and its properties can be used for diagnostic and power quality applications.

Originality/value

The dynamic tracking of the changes in time and frequency of real‐like signals originating from a power system are investigated in this paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Vesna Rubežić, Igor Djurović and Ervin Sejdić

The purpose of this paper is to propose a new algorithm for detection of chaos in oscillatory circuits. The algorithm is based on the wavelet transform.

110

Abstract

Purpose

The purpose of this paper is to propose a new algorithm for detection of chaos in oscillatory circuits. The algorithm is based on the wavelet transform.

Design/methodology/approach

The proposed detection is developed by using a specific measure obtained by averaging wavelet coefficients. This measure exhibits various values for chaotic and periodic states.

Findings

The proposed algorithm is applied to signals from autonomous systems such as the Chua’s oscillatory circuit, the Lorenz chaotic system and non-autonomous systems such as the Duffing oscillator. In addition, the detection is applied to sequences obtained from the logistic map. The results are compared to those obtained with a detrended fluctuation analysis and a time-frequency signal analysis based on detectors of chaotic states.

Originality/value

In this paper, a new algorithm is proposed for the detection of chaos from a single time series. The proposed technique is robust to the noise influence, having smaller calculation complexity with respect to the state-of-the-art techniques. It is suitable for real-time detection with delay that is about half of the window width.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 October 2019

Yuri Merizalde, Luis Hernández-Callejo, Oscar Duque-Pérez and Víctor Alonso-Gómez

Despite the wide dissemination and application of current signature analysis (CSA) in general industry, CSA is not commonly used in the wind industry, where the use of vibration…

Abstract

Purpose

Despite the wide dissemination and application of current signature analysis (CSA) in general industry, CSA is not commonly used in the wind industry, where the use of vibration signals predominates. Therefore, the purpose of this paper is to review the use of generator CSA (GCSA) in the online fault detection and diagnosis of wind turbines (WTs).

Design/methodology/approach

This is a bibliographical investigation in which the use of GCSA for the maintenance of WTs is analyzed. A section is dedicated to each of the main components, including the theoretical foundations on which GCSA is based and the methodology, mathematical models and signal processing techniques used by the proposals that exist on this topic.

Findings

The lack of appropriate technology and mathematical models, as well as the difficulty involved in performing actual studies in the field and the lack of research projects, has prevented the expansion of the use of GCSA for fault detection of other WT components. This research area has yet to be explored, and the existing investigations mainly focus on the gearbox and the doubly fed induction generator; however, modern signal treatment and artificial intelligence techniques could offer new opportunities in this field.

Originality/value

Although literature on the use of GCSA for the detection and diagnosis of faults in WTs has been published, these papers address specific applications for each of the WT components, especially gearboxes and generators. For this reason, the main contribution of this study is providing a comprehensive vision for the use of GCSA in the maintenance of WTs.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 949