Search results

1 – 10 of 814
Article
Publication date: 5 August 2019

Huifang Li, Mi Zhao, Lihua Wu, Piguang Wang and Xiuli Du

The purpose of this paper is to propose a stable high-order absorbing boundary condition (ABC) based on new continued fraction for scalar wave propagation in 2D and 3D unbounded…

Abstract

Purpose

The purpose of this paper is to propose a stable high-order absorbing boundary condition (ABC) based on new continued fraction for scalar wave propagation in 2D and 3D unbounded layers.

Design/methodology/approach

The ABC is obtained based on continued fraction (CF) expansion of the frequency-domain dynamic stiffness coefficient (DtN kernel) on the artificial boundary of a truncated infinite domain. The CF which has been used to the thin layer method in [69] will be applied to the DtN method to develop a time-domain high-order ABC for the transient scalar wave propagation in 2D. Furthermore, a new stable composite-CF is proposed in this study for 3D unbounded layers by nesting the above CF for 2D layer and another CF.

Findings

The ABS has been transformed from frequency to time domain by using the auxiliary variable technique. The high-order time-domain ABC can couple seamlessly with the finite element method. The instability of the ABC-FEM coupled system is discussed and cured.

Originality/value

This manuscript establishes a stable high-order time-domain ABC for the scalar wave equation in 2D and 3D unbounded layers, which is based on the new continued fraction. The high-order time-domain ABC can couple seamlessly with the finite element method. The instability of the coupled system is discussed and cured.

Details

Engineering Computations, vol. 36 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 July 2015

Ismaila Bayo Tijani, Rini Akmeliawati, Ari Legowo and Agus Budiyono

– The purpose of this paper is to develop a multiobjective differential evolution (MODE)-based extended H-infinity controller for autonomous helicopter control.

Abstract

Purpose

The purpose of this paper is to develop a multiobjective differential evolution (MODE)-based extended H-infinity controller for autonomous helicopter control.

Design/methodology/approach

Development of a MATLAB-based MODE suitable for controller synthesis. Formulate the H-infinity control scheme as an extended H-infinity loop shaping design procedure (H -LSDP) with incorporation of v-gap metric for robustness to parametric variation. Then apply the MODE-based algorithm to optimize the weighting function of the control problem formulation for optimal performance.

Findings

The proposed optimized H-infinity control was able to yield set of Pareto-controller candidates with optimal compromise between conflicting stability and time-domain performances required in autonomous helicopter deployment. The result of performance evaluation shows robustness to parameter variation of up to 20 per cent variation in nominal values, and in addition provides satisfactory disturbance rejection to wind disturbance in all the three axes.

Research limitations/implications

The formulated H-infinity controller is limited to hovering and low speed flight envelope. The optimization is focused on weighting function parameters for a given fixed weighting function structure. This thus requires a priori selection of weighting structures.

Practical implications

The proposed MODE-infinity controller algorithm is expected to ease the design and deployment of the robust controller in autonomous helicopter application especially for practicing engineer with little experience in advance control parameters tuning. Also, it is expected to reduce the design cycle involved in autonomous helicopter development. In addition, the synthesized robust controller will provide effective hovering/low speed autonomous helicopter flight control required in many civilian unmanned aerial vehicle (UAV) applications.

Social implications

The research will facilitate the deployment of low-cost, small-scale autonomous helicopter in various civilian applications.

Originality/value

The research addresses the challenges involved in selection of weighting function parameters for H-infinity control synthesis to satisfy conflicting stability and time-domain objectives. The problem of population initialization and objectives function computation in the conventional MODE algorithm are addressed to ensure suitability of the optimization algorithm in the formulated H-infinity controller synthesis.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 21 December 2020

Lihua Wu, Mi Zhao and Xiuli Du

The finite element method (FEM) is used to calculate the two-dimensional anti-plane dynamic response of structure embedded in D’Alembert viscoelastic multilayered soil on the…

183

Abstract

Purpose

The finite element method (FEM) is used to calculate the two-dimensional anti-plane dynamic response of structure embedded in D’Alembert viscoelastic multilayered soil on the rigid bedrock. This paper aims to research a time-domain absorbing boundary condition (ABC), which should be imposed on the truncation boundary of the finite domain to represent the dynamic interaction between the truncated infinite domain and the finite domain.

Design/methodology/approach

A high-order ABC for scalar wave propagation in the D’Alembert viscoelastic multilayered media is proposed. A new operator separation method and the mode reduction are adopted to construct the time-domain ABC.

Findings

The derivation of the ABC is accurate for the single layer but less accurate for the multilayer. To achieve high accuracy, therefore, the distance from the truncation boundary to the region of interest can be zero for the single layer but need to be about 0.5 times of the total layer height of the infinite domain for the multilayer. Both single-layered and multilayered numerical examples verify that the accuracy of the ABC is almost the same for both cases of only using the modal number excited by dynamic load and using the full modal number of infinite domain. Using the ABC with reduced modes can not only reduce the computation cost but also be more friendly to the stability. Numerical examples demonstrate the superior properties of the proposed ABC with stability, high accuracy and remarkable coupling with the FEM.

Originality/value

A high-order time-domain ABC for scalar wave propagation in the D’Alembert viscoelastic multilayered media is proposed. The proposed ABC is suitable for both linear elastic and D’Alembert viscoelastic media, and it can be coupled seamlessly with the FEM. A new operator separation method combining mode reduction is presented with better stability than the existing methods.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2014

Irene Woyna, Erion Gjonaj and Thomas Weiland

– The purpose of this paper is to present a time domain discontinuous Galerkin (DG) approach for modeling wideband frequency dependent surface impedance boundary conditions.

Abstract

Purpose

The purpose of this paper is to present a time domain discontinuous Galerkin (DG) approach for modeling wideband frequency dependent surface impedance boundary conditions.

Design/methodology/approach

The paper solves the Maxwellian initial value problem in a computational domain, which is spatially discretized by the higher order DG method. On the boundary of the computational domain the paper applies a suitable impedance boundary condition (IBC). The frequency dependency of the impedance function is modeled by auxiliary differential equations (ADE).

Findings

The authors will study the resonance frequency and the Q factor of different types of cavity resonators including lossy materials. The lossy materials are modeled by means of IBCs. The authors will compare the results with analytical results, as well as numerical results obtained by direct calculations where lossy materials are included explicitly into the numerical model. Several convergence studies are performed which demonstrate the accuracy of the approach.

Originality/value

Modeling of frequency dependent boundary conditions in time domain with finite difference time domain method (FDTD) method is considered in numerous papers, as well as in frequency domain finite element method (FEM), and in a few papers also time domain FEM. However, FDTD method is only first order accurate and fails in modeling of complicated surfaces. FEM allows for high order accuracy, but time domain modeling is numerically extremely expensive. In frequency domain, broadband modeling of frequency dependent boundary conditions requires several simulations as opposed to the time domain, where a single simulation is needed. The time domain DG method proposed in this paper allows to overcome the difficulties. The authors introduce a broadband surface impedance formulation based on the ADE approach for the higher order DG method.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 May 2017

Hongbo Zhu, Minzhou Luo, Jianghai Zhao and Tao Li

The purpose of this paper was to present a soft landing control strategy for a biped robot to avoid and absorb the impulsive reaction forces (which weakens walking stability

Abstract

Purpose

The purpose of this paper was to present a soft landing control strategy for a biped robot to avoid and absorb the impulsive reaction forces (which weakens walking stability) caused by the landing impact between the swing foot and the ground.

Design/methodology/approach

First, a suitable trajectory of the swing foot is preplanned to avoid the impulsive reaction forces in the walking direction. Second, the impulsive reaction forces of the landing impact are suppressed by the on-line trajectory modification based on the extended time-domain passivity control with admittance causality that has the reaction forces as inputs and the decomposed swing foot’s positions to trim off the forces as the outputs.

Findings

The experiment data and results are described and analyzed, showing that the proposed soft landing control strategy can suppress the impulsive forces and improve walking stability.

Originality/value

The main contribution is that a soft landing control strategy for a biped robot was proposed to deal with the impulsive reaction forces generated by the landing impact, which enhances walking stability.

Details

Industrial Robot: An International Journal, vol. 44 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 November 2020

Taki Eddine Lechekhab, Stojadin Manojlovic, Momir Stankovic, Rafal Madonski and Slobodan Simic

The control of a quadrotor unmanned aerial vehicle (UAV) is a challenging problem because of its highly nonlinear dynamics, under-actuated nature and strong cross-couplings. To…

Abstract

Purpose

The control of a quadrotor unmanned aerial vehicle (UAV) is a challenging problem because of its highly nonlinear dynamics, under-actuated nature and strong cross-couplings. To solve this problem, this paper aims to propose a robust control strategy, based on a concept of active disturbance rejection control (ADRC).

Design/methodology/approach

The altitude/attitude dynamics of a quadrotor is reformulated into the ADRC framework. Three distinct variations of the error-based ADRC algorithms, with different structures of generalized extended state observers (GESO), are derived for the altitude/attitude trajectory-following task. The convergence of the observation part is proved based on the singular perturbation theory. Through a frequency analysis and a quantitative comparison in a simulated environment, each design is shown to have certain advantages and disadvantages in terms of tracking accuracy and robustness. The digital prototypes of the proposed controllers for quadrotor altitude and attitude control channels are designed and validated through real-time hardware-in-the-loop (HIL) co-simulation, with field-programmable gate array (FPGA) hardware.

Findings

The effects of unavailable reference time-derivatives can be estimated by the ESO and rejected through the outer control loop. The higher order ESOs demonstrate better performances, but with reductions of stability margins. Time-domain simulation analysis reveals the benefits of the proposed control structure related to classical control approach. Real-time FPGA-based HIL co-simulations validated the performances of the considered digital controllers in typical quadrotor flight scenarios.

Practical implications

The conducted study forms a set of practical guidelines for end-users for selecting specific ADRC design for quadrotor control depending on the given control objective and work conditions. Furthermore, the paper presents detailed procedure for the design, simulation and validation of the embedded FPGA-based quadrotor control unit.

Originality/value

In light of the currently available literature on error-based ADRC, a comprehensive approach is applied here, which includes the design of error-based ADRC with different GESOs, its frequency-domain and time-domain analyses using different simulation of UAV flight scenarios, as well as its FPGA-based implementation and testing on the real hardware.

Article
Publication date: 1 September 1997

E. Siebrits and A.P. Peirce

Direct and indirect time marching boundary element methods often become numerically unstable. Evidence of, and reasons for, these instabilities is provided in this paper. Two new…

Abstract

Direct and indirect time marching boundary element methods often become numerically unstable. Evidence of, and reasons for, these instabilities is provided in this paper. Two new time stepping schemes are presented, both of which are more stable than the existing standard schemes available. In particular, we introduce the Half‐step scheme, which is more accurate and far more stable than existing methods. This scheme, which is demonstrated on a simple crack problem for the displacement discontinuity method, can also be introduced into the direct boundary element method. Implementation of the Half‐step scheme into existing boundary element codes will allow researchers to attack more challenging problems than before.

Details

Engineering Computations, vol. 14 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2016

Emre Kiyak

This study aims to present a method for the conceptual design and simulation of an aircraft flight control system.

Abstract

Purpose

This study aims to present a method for the conceptual design and simulation of an aircraft flight control system.

Design/methodology/approach

The design methodology is based on particle swarm optimization (PSO). PSO can be used to improve the performance of conventional controllers. The aim of the present study is threefold. First, it attempts to detect and isolate faults in an aircraft model. Second, it is to design a proportional (P) controller, a proportional derivative (PD) controller, a proportional-integral (PI) controller and a fuzzy controller for an aircraft model. Third, it is to design a PD controller for an aircraft using a PSO algorithm.

Findings

Conventional controllers, an intelligent controller and a PD controller-based PSO were investigated for flight control. It was seen that the P controller, the PI controller and the PD controller-based PSO caused overshoot. These overshoots were 18.5, 87.7 and 2.6 per cent, respectively. Overshoot was not seen using the PD controller or fuzzy controller. Steady state errors were almost zero for all controllers. The PD controller had the best settling time. The fuzzy controller was second best. The PD controller-based PSO was the third best, but the result was close to the others.

Originality/value

This study shows the implementation of the present algorithm for a specified space mission and also for study regarding variation of performance parameters. This study shows fault detection and isolation procedures and also controller gain choice for a flight control system. A comparison between conventional controllers and PD-based PSO controllers is presented. In this study, sensor fault detection and isolation are carried out, and, also, root locus, time domain analysis and Routh–Hurwitz methods are used to find the conventional controller gains which differ from other studies. A fuzzy controller is created by the trial and error method. Integral of squared time multiplied by squared error is used as a performance function type in PSO.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 October 2008

M.G. Perhinschi, M.R. Napolitano and G. Campa

The purpose of this paper is to present the development of a Matlab/Simulink‐based simulation environment for the design and testing of indirect and direct adaptive flight control…

1205

Abstract

Purpose

The purpose of this paper is to present the development of a Matlab/Simulink‐based simulation environment for the design and testing of indirect and direct adaptive flight control laws with fault tolerant capabilities to deal with the occurrence of actuator and sensor failures.

Design/methodology/approach

The simulation environment features a modular architecture and a detailed graphical user interface for simulation scenario set‐up. Indirect adaptive flight control laws are implemented based on an optimal control design and frequency domain‐based online parameter estimation. Direct adaptive flight control laws consist of non‐linear dynamic inversion performed at a reference nominal flight condition augmented with artificial neural networks (NNs) to compensate for inversion errors and abnormal flight conditions following the occurrence of actuator or sensor failures. Failure detection, identification, and accommodation schemes relying on neural estimators are developed and implemented.

Findings

The simulation environment provides a valuable platform for the evaluation and validation of fault‐tolerant flight control laws.

Research limitations/implications

The modularity of the simulation package allows rapid reconfiguration of control laws, aircraft model, and detection schemes. This flexibility allows the investigation of various design issues such as: the selection of control laws architecture (including the type of the neural augmentation), the tuning of NN parameters, the selection of parameter identification techniques, the effects of anti‐control saturation techniques, the selection and the tuning of the control allocation scheme, as well as the selection and tuning of the failure detection and identification schemes.

Originality/value

The novelty of this research efforts resides in the development and the integration of a comprehensive simulation environment allowing a very detailed validation of a number of control laws for the purpose of verifying the performance of actuator and sensor failure detection, identification, and accommodation schemes.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 January 2018

Jan Burek, Lukasz Zylka, Marcin Plodzien, Michal Gdula and Pawel Sulkowicz

The purpose of this paper is to determine the influence of the shape of a cutting edge on high-performance milling high-performance cutting. The main purpose of the test was to…

Abstract

Purpose

The purpose of this paper is to determine the influence of the shape of a cutting edge on high-performance milling high-performance cutting. The main purpose of the test was to determine the possibility of increasing the efficiency of machining AlZn5.5CuMg alloy, which is used mainly for the thin-walled structural aerospace components.

Design/methodology/approach

In all, eight cutters for machining aluminum alloys with different shape of the cutting edge (1 – continuous, 4 – interrupted, 3 – wavy) were tested. The influence of different shapes of a cutting edge on cutting force components and vibration amplitude was analyzed. Furthermore, the impact of a chip breaker on the form of a chip was determined.

Findings

The conducted test shows that using discontinuous shapes of a cutting edge has impact on the reduction of the cutting force components and, in most cases, on the increase of vibration amplitude. Moreover, using a chip breaker caused significant chip dispersion. The optimal shape of a cutting edge for cutting AlZn5.5CuMg alloy is fine wavy shape.

Practical implications

Potential practical application of the research is high-performance milling of AlZn5.5CuMg alloy, for example, production of thin-walled aerospace structural components.

Originality/value

Different shapes of a cutting edge during high-performance milling of aluminum alloy were tested. The influence of tested geometries on HPC process was determined. The most favourable shape of a cutting edge for high-performance cutting of AlZn5.5CuMg alloy was determined.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 814