Search results

1 – 10 of 80
Article
Publication date: 23 December 2015

Jasem A. Ahmed and M. A. Wahab

In this paper we propose exact thermoelastic stress, and iterative creep solutions for a non-uniformly heat generating and rotating cylindrical vessel made of functionally graded…

Abstract

In this paper we propose exact thermoelastic stress, and iterative creep solutions for a non-uniformly heat generating and rotating cylindrical vessel made of functionally graded thermal and mechanical properties. Equations of equilibrium, compatibility, stress-strain, and strain-displacement relations are solved to obtain closed-form initial stress and strain solutions. It is found that material gradient indices have significant influences on thermoelastic stress profiles. For creep analysis, Norton’s model is incorporated into rate forms of the above-mentioned equations to obtain time-dependent stress and strain results using an iterative method. Validity of our solutions are at first verified using finite element analysis, and numerical results found in the recent literature are improved. Investigation of effects of material gradients reveals that radial variation of density and creep coefficient have significant effects on strains histories, while Young’s modulus and thermal property distributions only influence stress redistribution at an early stage of creep deformation.

Article
Publication date: 1 September 2002

C.P. Providakis and S.G. Kourtakis

The feasibility of advanced viscoplastic models for non‐linear boundary element analysis of metallic structural components with dependence on thermomechanical history is…

Abstract

The feasibility of advanced viscoplastic models for non‐linear boundary element analysis of metallic structural components with dependence on thermomechanical history is investigated. Several numerical examples are presented using the boundary element implementation of two different internal state variable viscoplastic models to the solution of time‐dependent inelastic problems arising in creeping metallic structural components under the combined action of high temperature loading gradients and quasi‐static mechanical loading conditions. To demonstrate the efficiency of the implemented viscoplastic models, the results obtained using the direct boundary element methodology are compared with those obtained by both analytical and finite element solution as well as, for different numerical results of plane strain thermoviscoplastic deformation problems under general thermomechanical loading.

Details

Engineering Computations, vol. 19 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 March 2020

Hossein Sepiani, Maria Anna Polak and Alexander Penlidis

The purpose of this study is to present a finite element (FE) implementation of phenomenological three-dimensional viscoelastic and viscoplastic constitutive models for long term…

Abstract

Purpose

The purpose of this study is to present a finite element (FE) implementation of phenomenological three-dimensional viscoelastic and viscoplastic constitutive models for long term behaviour prediction of polymers.

Design/methodology/approach

The method is based on the small strain assumption but is extended to large deformation for materials in which the stress-strain relation is nonlinear and the concept of incompressibility is governing. An empirical approach is used for determining material parameters in the constitutive equations, based on measured material properties. The modelling process uses a spring and dash-pot and a power-law approximation function method for viscoelastic and viscoplastic nonlinear behaviour, respectively. The model improvement for long term behaviour prediction is done by modifying the material parameters in such a way that they account for the current test time. The determination of material properties is based on the non-separable type of relations for nonlinear materials in which the material properties change with stress coupled with time.

Findings

The proposed viscoelastic and viscoplastic models are implemented in a user material algorithm of the FE general-purpose program ABAQUS and the validity of the models is assessed by comparisons with experimental observations from tests on high-density polyethylene samples in one-dimensional tensile loading. Comparisons show that the proposed constitutive model can satisfactorily represent the time-dependent mechanical behaviour of polymers even for long term predictions.

Originality/value

The study provides a new approach in long term investigation of material behaviour using FE analysis.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 February 2012

G. Sossou

The actual concern for structural engineers is the failure of the structural material to meet the design safety and the safe service life of large span and wide floor space…

Abstract

The actual concern for structural engineers is the failure of the structural material to meet the design safety and the safe service life of large span and wide floor space buildings. The main idea in this present report reflects the combination of the economical use of construction materials with the long and durable safe service life to cover large floor spaces, using precast and prestreseed concrete shell structural members. This paper describes the present ongoing numerical and experimental analysis model used to determine the structural long duration flexural and nonlinear deformation characteristics of reinforced precast elliptical paraboloid concrete shell elements, prestressed in both directions. Horizontal precast and prestressed edge beams supported on prestressed columns are provided to support the longitudinal edges of the shells. This present study has been based on nonlinear differential equations of the concrete matrix creep theory which reflects the correlation between the matrix stress and strain by its modulus of elasticity and on the well-known geometrical preconditions of the theory of elasticity concerning thin plates with small flexural deformations. For structural and crack predictions, the well-known virtual work principles have been used to estimate (a) transient bi-directional strains due to the matrix creep and shrinkage, (b) the resulting time-dependent bi-directional stress redistribution, as well as (c) bi-directional displacement variations in the structural shell elements and finally (d) bi-directional pre-stressing losses in the pre-stressed high yield tendons. The concrete shear stresses have been evaluated by the well-known principle of Juravskiy. A series of original test experiments with once evaluated strength parameters has been planned to be successfully used to provide encouraging support for the numerical evaluations.

Article
Publication date: 13 June 2019

Karim Al Khatib, Elie Hantouche and Mohammed Ali Morovat

This study aims to investigate the thermal creep behavior of steel frame assemblies with shear tab connections subjected to transient-state fire temperatures. Different key…

Abstract

Purpose

This study aims to investigate the thermal creep behavior of steel frame assemblies with shear tab connections subjected to transient-state fire temperatures. Different key parameters are investigated to study their effect on the global response of the steel frames in fire.

Design/methodology/approach

Finite element (FE) models of connection assemblies are first analyzed using Abaqus under transient-state temperature conditions and validated against experimental work available in the literature. Upon acquiring the validated conditions, parametric studies are carried out to study the effect of key geometric and heating parameters on the overall response of the frame assembly to fire temperatures. Thermal creep material is also incorporated in the analyses through a user-defined subroutine, and a comparison between including and excluding creep material is illustrated to show the effect of thermal creep on the structural behavior.

Findings

The results reported herein indicate that having a rigid column increases the thermal-induced axial forces, thus increasing the development of thermal creep strains. Slow heating rates can cause axial stress relaxation in the restrained beam and increase the mid-span deflection and consequently the development of beam catenary action. The results also show that reaching higher initial cooling temperatures and having longer cooling phase durations result in more tensile forces at the end of the cooling phase.

Originality/value

Previous studies were limited to isolated steel connections under steady-state conditions. This study investigates the creep behavior of shear tab connection assemblies under transient-state conditions of fire when creep effects are explicitly considered. This can provide a rational and realistic assessment of the steel behavior in fire events.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 September 2016

Wei V. Liu, Derek B. Apel and Vivek S. Bindiganavile

The trapped geothermal heat in the infinite rock mass through which mine tunnels are excavated is a great threat to the safety of personnel and mine operating equipment in deep…

Abstract

Purpose

The trapped geothermal heat in the infinite rock mass through which mine tunnels are excavated is a great threat to the safety of personnel and mine operating equipment in deep underground hot mines. In order to lessen the temperature inside the tunnel a considerable amount of energy is being spent by the way of using ventilation and cooling systems to dissipate the heat. However, operational costs of the system rise quite considerably, especially as the mines get deeper. Shotcrete is used both as a structural lining and as an effective insulation to reduce the heat load on the ventilation and cooling system within such tunnels. The paper aims to discuss these issues.

Design/methodology/approach

In order to analyse this problem of heat flow and thermal stresses and their time dependent pattern, several cylindrical models, in both analytical and numerical forms, are discussed and compared in this paper.

Findings

This study shows the validation of ABAQUS® software to predict the time dependent temperature and the thermal stresses in mine tunnels through the comparisons with the available analytical models. Further, thermal insulation effects of shotcrete are also evaluated with these theoretical models and it is found that all the models gave results in close agreements with one another.

Originality/value

Therefore, this study provides the theoretical proof for advantages in applying shotcrete as the thermal insulation layer in underground mines.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2006

W.J. Plumbridge

To draw attention to the need to consider design and performance, as well as production, in the implementation of lead‐free solders.

Abstract

Purpose

To draw attention to the need to consider design and performance, as well as production, in the implementation of lead‐free solders.

Design/methodology/approach

The potential failure modes of solder joints and their underlying causes are reviewed. A hypothetical design exercise is employed to demonstrate key requirements for reliable design.

Findings

The substantial variation in influential mechanical properties over the ranges of stress, temperature and strain rate is likely to be encountered in service. In addition to these three parameters, there is the need to consider time‐temperature profiles in the service cycle and the prior thermal history of the joint materials.

Originality/value

The demonstration that reliable design and life prediction can only be achieved by employing appropriate properties in appropriate constitutive expressions.

Details

Soldering & Surface Mount Technology, vol. 18 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 May 2008

Gustav Amberg and Minh Do‐Quang

In welding there is an intricate coupling between the composition of the material and the shape and depth of the weld pool. In certain materials, the weld pool may not penetrate…

Abstract

Purpose

In welding there is an intricate coupling between the composition of the material and the shape and depth of the weld pool. In certain materials, the weld pool may not penetrate the material easily, so that it is difficult or impossible to weld, while other seemingly quite similar materials may be well suited for welding. This is due to the convective heat transfer in the melt, where the flow is driven primarily by surface tension gradients. This paper aims to study how surface active agents affect the flow and thus the welding properties by surveying some recent 3D simulations of weld pools.

Design/methodology/approach

Some basic concepts in the modelling of flow in a weld pool are reviewed. The mathematical models for a convecting melt, with a detailed model for the surface tension and the Marangoni stress in the presence of surfactants, are presented. The effect of the sign of the Marangoni coefficient on the flow pattern, and thus, via melting and freezing, on the shape of the weld pool, is discussed.

Findings

It is seen that it is beneficial to have surfactants present at the pool surface, in order to have good penetration. Results from a refined surface tension model that accounts for non‐equilibrium redistribution of surfactants are presented. It is seen that the surfactant concentration is significantly modified by the fluid flow. Thereby, the effective surface tension and the Marangoni stresses are altered, and the redistribution of surfactants will affect the penetration depth of the weld pool.

Originality/value

The importance of surfactants for weld pool shapes, and in particular the convective redistribution of surfactants, is clarified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2016

Mahmud M.S. Dwaikat

Different approaches, originally developed for ambient conditions, exist in current codes and standards for incorporating the effect of moment–shear (M–V) interaction on the…

Abstract

Purpose

Different approaches, originally developed for ambient conditions, exist in current codes and standards for incorporating the effect of moment–shear (M–V) interaction on the plastic-carrying capacity of wide-flanged (WF) steel sections. There is a lack of experimental and theoretical studies that address this issue under fire conditions.

Design/methodology/approach

The current paper presents a numerical study investigating the effect of fire exposure on the plastic M–V capacity curves of doubly symmetrical, WF, hot-rolled steel sections. Validated high-fidelity finite element (FE) models constructed via ANSYS are used to study the effect M–V interaction on the plastic capacity of WF sections. Also, a simplified plastic sectional analysis, intended to be used by engineering practitioners, is proposed for generating the plastic M–V interaction curves.

Findings

The study shows that the fire-induced non-uniform heating of the section plates affects the shape of the plastic M–V interaction capacity curves. Comparison of different methods against FE results shows that the method specified in the Eurocode is very conservative at room-temperature, but it turns out to be barely sufficiently conservative under fire conditions.

Originality/value

It is well noted that lack of fire tests on the M–V interaction, including the stability of the plates of steel sections under fire, make it difficult to reach a definite assessment on the effect of M–V interaction on the bearing capacity of steel beams.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 80