Search results

1 – 5 of 5
Article
Publication date: 25 April 2024

Ahmad Ghaith and Ma Huimin

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the…

Abstract

Purpose

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the indispensable products and services they provide, such as power generation, transportation and defense weapons. Therefore, the main purpose of this study is to develop a framework that outlines future research on systems safety and provides a better understanding of how organizations can effectively manage hazard events.

Design/methodology/approach

In this research, we developed the high hazard theory (HHT) and a theoretical framework based on the grounded theory method (GTM) and the integration of three established theoretical perspectives: normal accident theory (NAT), high reliability theory (HRT) and resilience engineering (RE) theory.

Findings

We focused on the temporal aspect of accidents to create a timeline showing the progression of hazard events and the factors contributing to safety and hazards in organizations. Given the limitations of the previous theories in providing a coherent explanation of hazard event escalation in high-hazard organizations (HHOs), we argue that the highlighted theories can be more complementary than contradictory regarding their standpoints on disasters and accident prevention.

Practical implications

A proper appreciation of the hazard nature of organizations can help reduce their susceptibility to failure, prevent outages and breakdowns of systems, identify areas for improvement and develop strategies to enhance performance.

Originality/value

By developing HHT, we contribute to systems safety research by developing a new, refined theory and enrich the theoretical debate. We also expand the understanding of scholars and practitioners about the characteristics of organizations working in high-hazard environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 April 2024

Hua Liu and Shaobo Wei

Drawing upon resource dependence theory, this study aims to examine how a firm’s information technology (IT) capabilities (i.e. IT integration and IT reconfiguration) influence…

Abstract

Purpose

Drawing upon resource dependence theory, this study aims to examine how a firm’s information technology (IT) capabilities (i.e. IT integration and IT reconfiguration) influence its responses to disruptions – bridging with a current supplier and buffering with an alternative supplier. We further examine how such relationships are moderated by the firm–supplier relative dependence (i.e. firm dependence advantage and supplier dependence advantage).

Design/methodology/approach

Based on data from 141 match-paired surveys of firms in China, we test our model.

Findings

Our study finds that IT integration positively influences bridging and IT reconfiguration positively influences buffering. Furthermore, our findings indicate that the positive impact of IT integration on bridging is negatively influenced by the firm’s dependence (FD) advantage but positively moderated by the supplier’s dependence advantage. By contrast, the positive impact of IT reconfiguration on buffering is negatively influenced by the FD advantage.

Originality/value

Our study provides a more nuanced insight into the effects of IT capabilities on disruption responses and a better understanding of the buyer–supplier dependence boundary conditions under which these effects vary.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 25 April 2024

Da Huo, Rihui Ouyang, Aidi Tang, Wenjia Gu and Zhongyuan Liu

This paper delves into cross-border E-business, unraveling its intricate dynamics and forecasting its future trajectory.

Abstract

Purpose

This paper delves into cross-border E-business, unraveling its intricate dynamics and forecasting its future trajectory.

Design/methodology/approach

This paper projects the prospective market size of cross-border E-business in China for the year 2023 using the GM (1,1) gray forecasting model. Furthermore, to enhance the analysis, the paper attempts to simulate and forecast the size of China’s cross-border E-business sector using the GM (1,3) gray model. This extended model considers not only the historical trends of cross-border E-business but also the growth patterns of GDP and the digital economy.

Findings

The forecast indicates a market size of 18,760 to 18,934 billion RMB in 2023, aligning with the consistent growth observed in previous years. This suggests a sustained positive trajectory for cross-border E-business.

Originality/value

Cross-border e-commerce critically shapes China’s global integration and traditional industry development. The research in this paper provides insights beyond statistical trends, contributing to a nuanced understanding of the pivotal role played by cross-border e-commerce in shaping China’s economic future.

Details

Journal of Internet and Digital Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2752-6356

Keywords

Article
Publication date: 7 December 2022

Ahmed Mohammed, Tarek Zayed, Fuzhan Nasiri and Ashutosh Bagchi

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to…

Abstract

Purpose

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to formulate a pavement resilience index while incorporating asset management and the associated resilience indicators from the authors’ previous research work.

Design/methodology/approach

This paper introduces a set of holistic-based key indicators that reflect municipal infrastructure resiliency. Thenceforth, the indicators were integrated using the weighted sum mean method to form the proposed resilience index. Resilience indicators weights were determined using principal components analysis (PCA) via IBM SPSS®. The developed framework for the PCA was built based on an optimization model output to generate the required weights for the desired resilience index. The output optimization data were adjusted using the standardization method before performing PCA.

Findings

This paper offers a mathematical approach to generating a resilience index for municipal infrastructure. The statistical tests conducted throughout the study showed a high significance level. Therefore, using PCA was proper for the resilience indicators data. The proposed framework is beneficial for asset management experts, where introducing the proposed index will provide ease of use to decision-makers regarding pavement network maintenance planning.

Research limitations/implications

The resilience indicators used need to be updated beyond what is mentioned in this paper to include asset redundancy and structural asset capacity. Using clustering as a validation tool is an excellent opportunity for other researchers to examine the resilience index for each pavement corridor individually pertaining to the resulting clusters.

Originality/value

This paper provides a unique example of integrating resilience and asset management concepts and serves as a vital step toward a comprehensive integration approach between the two concepts. The used PCA framework offers dynamic resilience indicators weights and, therefore, a dynamic resilience index. Resiliency is a dynamic feature for infrastructure systems. It differs during their life cycle with the change in maintenance and rehabilitation plans, systems retrofit and the occurring disruptive events throughout their life cycle. Therefore, the PCA technique was the preferred method used where it is data-based oriented and eliminates the subjectivity while driving indicators weights.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 April 2024

Fatemeh Ravandi, Azar Fathi Heli Abadi, Ali Heidari, Mohammad Khalilzadeh and Dragan Pamucar

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of…

Abstract

Purpose

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of ambulances pose operational and momentary challenges, necessitating an optimal policy based on the system's real-time status. While previous studies have addressed these concerns, limited attention has been given to the optimal allocation of technicians to respond to emergency situation and minimize overall system costs.

Design/methodology/approach

In this paper, a bi-objective mathematical model is proposed to maximize system coverage and enable flexible movement across bases for location, dispatch and relocation of ambulances. Ambulances relocation involves two key decisions: (1) allocating ambulances to bases after completing services and (2) deciding to change the current ambulance location among existing bases to potentially improve response times to future emergencies. The model also considers the varying capabilities of technicians for proper allocation in emergency situations.

Findings

The Augmented Epsilon-Constrained (AEC) method is employed to solve the proposed model for small-sized problem. Due to the NP-Hardness of the model, the NSGA-II and MOPSO metaheuristic algorithms are utilized to obtain efficient solutions for large-sized problems. The findings demonstrate the superiority of the MOPSO algorithm.

Practical implications

This study can be useful for emergency medical centers and healthcare companies in providing more effective responses to emergency situations by sending technicians and ambulances.

Originality/value

In this study, a two-objective mathematical model is developed for ambulance location and dispatch and solved by using the AEC method as well as the NSGA-II and MOPSO metaheuristic algorithms. The mathematical model encompasses three primary types of decision-making: (1) Allocating ambulances to bases after completing their service, (2) deciding to relocate the current ambulance among existing bases to potentially enhance response times to future emergencies and (3) considering the diverse abilities of technicians for accurate allocation to emergency situations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 5 of 5