Search results

1 – 10 of 52
Article
Publication date: 3 October 2022

Libiao Bai, Shuyun Kang, Kaimin Zhang, Bingbing Zhang and Tong Pan

External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk…

327

Abstract

Purpose

External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk causality in PPs, assessing ESRs is difficult. This research aims to solve this problem by developing an ESR-PP two-layer fuzzy Bayesian network (FBN) model.

Design/methodology/approach

A two-layer FBN model for evaluating ESRs with risk causality and project dependency is proposed. The directed acyclic graph (DAG) of an ESR-PP network is first constructed, and the conditional probability tables (CPTs) of the two-layer network are further presented. Next, based on the fuzzy Bayesian network, key variables and the impact of ESRs are assessed and analyzed by using GeNIe2.3. Finally, a numerical example is used to demonstrate and verify the application of the proposed model.

Findings

The proposed model is a useable and effective approach for ESR assessment while considering risk causality and project dependency in PPs. The impact of ESRs on PP can be calculated to determine whether to control risk, and the most critical and heavily contributing risks and project(s) in the developed model are identified based on this.

Originality/value

This study extends prior research on PP risk in terms of stakeholders. ESRs that have received limited attention in the past are explored from an interaction perspective in the PP domain. A new two-layer FBN model considering risk causality and project dependency is proposed, which can synthesize different dependencies between projects.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 February 2024

Feng Qian, Yongsheng Tu, Chenyu Hou and Bin Cao

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods…

Abstract

Purpose

Automatic modulation recognition (AMR) is a challenging problem in intelligent communication systems and has wide application prospects. At present, although many AMR methods based on deep learning have been proposed, the methods proposed by these works cannot be directly applied to the actual wireless communication scenario, because there are usually two kinds of dilemmas when recognizing the real modulated signal, namely, long sequence and noise. This paper aims to effectively process in-phase quadrature (IQ) sequences of very long signals interfered by noise.

Design/methodology/approach

This paper proposes a general model for a modulation classifier based on a two-layer nested structure of long short-term memory (LSTM) networks, called a two-layer nested structure (TLN)-LSTM, which exploits the time sensitivity of LSTM and the ability of the nested network structure to extract more features, and can achieve effective processing of ultra-long signal IQ sequences collected from real wireless communication scenarios that are interfered by noise.

Findings

Experimental results show that our proposed model has higher recognition accuracy for five types of modulation signals, including amplitude modulation, frequency modulation, gaussian minimum shift keying, quadrature phase shift keying and differential quadrature phase shift keying, collected from real wireless communication scenarios. The overall classification accuracy of the proposed model for these signals can reach 73.11%, compared with 40.84% for the baseline model. Moreover, this model can also achieve high classification performance for analog signals with the same modulation method in the public data set HKDD_AMC36.

Originality/value

At present, although many AMR methods based on deep learning have been proposed, these works are based on the model’s classification results of various modulated signals in the AMR public data set to evaluate the signal recognition performance of the proposed method rather than collecting real modulated signals for identification in actual wireless communication scenarios. The methods proposed in these works cannot be directly applied to actual wireless communication scenarios. Therefore, this paper proposes a new AMR method, dedicated to the effective processing of the collected ultra-long signal IQ sequences that are interfered by noise.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 November 2023

Sanjay Kumar, Kushal Sharma, Oluwole Daniel Makinde, Vimal Kumar Joshi and Salman Saleem

The purpose of this study is to investigate the entropy generation in different nanofluids flow over a vertically moving rotating disk. Unlike the classical Karman flow…

Abstract

Purpose

The purpose of this study is to investigate the entropy generation in different nanofluids flow over a vertically moving rotating disk. Unlike the classical Karman flow, water-based nanofluids have various suspended nanoparticles, namely, Cu, Ag, Al2O3 and TiO2, and the disk is also moving vertically with time-dependent velocity.

Design/methodology/approach

The Keller box technique numerically solves the governing equations after reduction by suitable similarity transformations. The shear stress and heat transport features, along with flow and temperature fields, are numerically computed for different concentrations of the nanoparticles.

Findings

This study is done comparatively in between different nanofluids and for the cases of vertical movement of the disk. It is found that heat transfer characteristics rely not only on considered nanofluid but also on disk movement. Moreover, the upward movement of the disk diminishes the heat-transfer characteristics of the fluid for considered nanoparticles. In addition, for the same group of nanoparticles, an entropy generation study is also performed, and an increasing trend is found for all nanoparticles, with alumina nanoparticles dominating the others.

Originality/value

This research is a novel work on a vertically moving rotating surface for the water-conveying nanoparticle fluid flow with entropy generation analysis. The results were found to be in good agreement in the case of pure fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Ting Dai and Chang Tao

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but…

Abstract

Purpose

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but also changes along time. A thermal conductivity prediction model for aerogel considering heat treatment effect is carried out and applied to solve the heat conduction problem of a TPS. The aim of this study is to provide theoretical and numerical references for further development of aerogels applying to TPSs.

Design/methodology/approach

A thermal conductivity prediction model for aerogel is established considering treatment effect. The heat conduction problem of a TPS is derived and solved by combining the differential quadrature method and the Runge–Kutta method. The prediction results of aerogel thermal conductivities are verified by comparing with those in literature, while the calculated temperature field of TPS is verified by comparing with that by ABAQUS.

Findings

Numerical results show that when applying the current prediction model, the calculated high temperature area in the aerogel layer is narrowed due to the decrease of the thermal conductivity during heat treatment process.

Originality/value

This study will be beneficial to carry out the precise design of TPS for long endurance HFVs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

170

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 11 September 2023

Mohd Irfan and Anup Kumar Sharma

A progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior…

Abstract

Purpose

A progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior to the predetermined terminal time T. The generalized progressive hybrid censoring scheme (GPHCS) efficiently addresses to overcome the limitation of the PHCS.

Design/methodology/approach

In this article, estimation of model parameter, survival and hazard rate of the Unit-Lindley distribution (ULD), when sample comes from the GPHCS, have been taken into account. The maximum likelihood estimator has been derived using Newton–Raphson iterative procedures. Approximate confidence intervals of the model parameter and their arbitrary functions are established by the Fisher information matrix. Bayesian estimation procedures have been derived using Metropolis–Hastings algorithm under squared error loss function. Convergence of Markov chain Monte Carlo (MCMC) samples has been examined. Various optimality criteria have been considered. An extensive Monte Carlo simulation analysis has been shown to compare and validating of the proposed estimation techniques.

Findings

The Bayesian MCMC approach to estimate the model parameters and reliability characteristics of the generalized progressive hybrid censored data of ULD is recommended. The authors anticipate that health data analysts and reliability professionals will get benefit from the findings and approaches presented in this study.

Originality/value

The ULD has a broad range of practical utility, making it a problem to estimate the model parameters as well as reliability characteristics and the significance of the GPHCS also encourage the authors to consider the present estimation problem because it has not previously been discussed in the literature.

Article
Publication date: 10 October 2023

Sou-Sen Leu, Yen-Lin Fu and Pei-Lin Wu

This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect…

Abstract

Purpose

This paper aims to develop a dynamic civil facility degradation prediction model to forecast the reliability performance tendency and remaining useful life under imperfect maintenance based on the inspection records and the maintenance actions.

Design/methodology/approach

A real-time hidden Markov chain (HMM) model is proposed in this paper to predict the reliability performance tendency and remaining useful life under imperfect maintenance based on rare failure events. The model assumes a Poisson arrival pattern for facility failure events occurrence. HMM is further adopted to establish the transmission probabilities among stages. Finally, the simulation inference is conducted using Particle filter (PF) to estimate the most probable model parameters. Water seals at the spillway hydraulic gate in a Taiwan's reservoir are used to examine the appropriateness of the approach.

Findings

The results of defect probabilities tendency from the real-time HMM model are highly consistent with the real defect trend pattern of civil facilities. The proposed facility degradation prediction model can provide the maintenance division with early warning of potential failure to establish a proper proactive maintenance plan, even under the condition of rare defects.

Originality/value

This model is a new method of civil facility degradation prediction under imperfect maintenance, even with rare failure events. It overcomes several limitations of classical failure pattern prediction approaches and can reliably simulate the occurrence of rare defects under imperfect maintenance and the effect of inspection reliability caused by human error. Based on the degradation trend pattern prediction, effective maintenance management plans can be practically implemented to minimize the frequency of the occurrence and the consequence of civil facility failures.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 15 December 2023

Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng and Tao Zhang

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Abstract

Purpose

This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.

Design/methodology/approach

Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.

Findings

The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.

Originality/value

A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 52