Search results

1 – 10 of over 55000
Article
Publication date: 13 March 2017

Anthony Deloge Ariyanayagam and Mahen Mahendran

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel…

Abstract

Purpose

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel frame (LSF) walls exposed to realistic design fire curves.

Design/methodology/approach

The energy-based time equivalent method was developed based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of the standard fire time – temperature curve. The FRR predicted by the energy-based method for LSF wall configurations exposed to both rapid and prolonged fires were compared with those from fire design rules and finite element analyses (FEA).

Findings

The proposed energy method can be used to obtain the FRR of LSF walls in case of prolonged fires and cannot be used for rapid fires as the computed FRRs were higher than the results from FEA and fire design rules due to the influence of thermal bowing and its magnification effects at a high temperature gradient across the studs for rapid fires.

Originality/value

The energy-based time equivalent method was developed based on equal fire severity principles. Three different wall configurations were considered and exposed to both rapid and prolonged fires. The FRR obtained from the energy-based method were compared with fire design rules and FEA results to assess the use of the energy-based method to predict the FRR of LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 December 2020

Robert Kuehnen, Maged Youssef and Salah El-Fitiany

The design of buildings for fire events is essential to ensure occupant safety. Supplementary to simple prescriptive methods, performance-based fire design can be applied to…

Abstract

Purpose

The design of buildings for fire events is essential to ensure occupant safety. Supplementary to simple prescriptive methods, performance-based fire design can be applied to achieve a greater level of safety and flexibility in design. To make performance-based fire design more accessible, a time-equivalent method can be used to approximate a given natural fire event using a single standard fire with a specific duration. Doing so allows for natural fire events to be linked to the wealth of existing data from the standard fire scenario. The purpose of this paper is to review and assess the application of an existing time-equivalent method in the performance-based design of reinforced concrete (RC) beams.

Design/methodology/approach

The assessment is established by computationally developing the moment-curvature response of RC beam sections during fire exposure. The sectional response due to natural fire and time equivalent fire are compared.

Findings

It is shown that the examined time equivalent method is able to predict the sectional response with suitable accuracy for performance-based design purposes.

Originality/value

The research is the first to provide a comprehensive evaluation of the moment-curvature diagram of RC beams using time-equivalent standard fire scenarios that model realistic fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 June 2017

Sivakumar Kesawan and Mahen Mahendran

This paper aims to present an investigation conducted to evaluate the effects of important parameters affecting the structural fire performance of light gauge steel frame (LSF…

Abstract

Purpose

This paper aims to present an investigation conducted to evaluate the effects of important parameters affecting the structural fire performance of light gauge steel frame (LSF) walls. It also evaluates the applicability of commonly used critical hot flange temperature method to determine the fire resistance ratings (FRR) of different LSF walls.

Design/methodology/approach

The effects of important parameters such as stud section profiles and their dimensions, elevated temperature mechanical property reduction factors of the steel used, types of wall configurations and fire curves on the FRR of LSF walls were investigated. An extensive finite element analysis-based parametric study was conducted to evaluate their effects (finite element analysis – FEA). For this purpose, finite element models which were validated using the full-scale fire test results were used. Using the structural capacities obtained from FEAs, the load ratio versus FRR curves were produced for all the different LSF walls considered.

Findings

Stud depth and thickness significantly affected the fire performance of LSF walls because of the differences in temperature development pattern, thermal bowing deflections and the failure modes of stud. The FRR of LSF walls increased significantly when steel studs with higher elevated temperature mechanical property reduction factors were used. FRR significantly changed when realistic design fire curves were used instead of the standard fire curve. Furthermore, both the critical hot and average flange temperature methods were found to be unsuitable to predict the FRR of LSF walls.

Originality/value

The developed comprehensive fire performance data would facilitate the development of LSF walls with enhanced fire performance, and, importantly, it would facilitate and advance the successful applications of hollow flange channel section studs in LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 15 July 2021

Thadshajini Suntharalingam, Irindu Upasiri, Perampalam Gatheeshgar, Keerthan Poologanathan, Brabha Nagaratnam, Heshachanaa Rajanayagam and Satheeskumar Navaratnam

Fire safety of a building is becoming a prominent consideration due to the recent fire accidents and the consequences in terms of loss of life and property damage. ISO 834…

Abstract

Purpose

Fire safety of a building is becoming a prominent consideration due to the recent fire accidents and the consequences in terms of loss of life and property damage. ISO 834 standard fire test regulation and simulation cannot be applied to assess the fire performance of 3D printed concrete (3DPC) walls as the real fire time-temperature curves could be more severe, compared to standard fire curve, in terms of the maximum temperature and the time to reach that maximum temperature. Therefore, this paper aims to describe an investigation on the fire performance of 3DPC composite wall panels subjected to different fire scenarios.

Design/methodology/approach

The fire performance of 3DPC wall was traced through developing an appropriate heat transfer numerical model. The validity of the developed numerical model was confirmed by comparing the time-temperature profiles with available fire test results of 3DPC walls. A detailed parametric study of 140 numerical models were, subsequently, conducted covering different 3DPC wall configurations (i.e. solid, cavity and rockwool infilled cavity), five varying densities and consideration of four fire curves (i.e. standard, hydrocarbon fire, rapid and prolong).

Findings

3DPC walls and Rockwool infilled cavity walls showed superior fire performance. Furthermore, the study indicates that the thermal responses of 3DPC walls exposed to rapid-fire is crucial compared to other fire scenarios.

Research limitations/implications

To investigate the thermal behaviour, ABAQUS allows performing uncoupled and coupled thermal analysis. Coupled analysis is typically used to investigate combined mechanical-thermal behaviour. Since, considered 3DPC wall configurations are non-load bearing, uncouple heat transfer analysis was performed. Time-temperature variations can be obtained to study the thermal response of 3DPC walls.

Originality/value

At present, there is limited study to analyse the behaviour of 3DPC composite wall panels in real fire scenarios. Hence, this paper presents an investigation on the fire performance of 3DPC composite wall panels subjected to different fire scenarios. This research is the first attempt to extensively study the fire performance of non-load bearing 3DPC walls.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Abstract

Details

Advances in Accounting Education Teaching and Curriculum Innovations
Type: Book
ISBN: 978-0-85724-052-1

Article
Publication date: 28 April 2014

Weiwei Zhang, Xianlong Jin and Zhihao Yang

The great magnitude differences between the integral tunnel and its structure details make it impossible to numerically model and analyze the global and local seismic behavior of…

Abstract

Purpose

The great magnitude differences between the integral tunnel and its structure details make it impossible to numerically model and analyze the global and local seismic behavior of large-scale shield tunnels using a unified spatial scale, even with the help of supercomputers. The paper aims to present a combined equivalent & multi-scale simulation method, by which the tunnel's major mechanical properties under seismic loads can be represented by the equivalent model, and the seismic responses of the interested details can be studied efficiently by the coupled multi-scale model.

Design/methodology/approach

The nominal orthotropic material constants of the equivalent tunnel model are inversely determined by fitting the modal characteristics of the equivalent model with the corresponding segmental lining model. The critical sections are selected by comprehensive analyzing of the integral compression/extension and bending loads in the equivalent lining under the seismic shaking and the coupled multi-scale model containing the details of interest is solved by the mixed time explicit integration algorithm.

Findings

The combined equivalent & multi-scale simulation method is an effective and efficient way for seismic analyses of large-scale tunnels. The response of each flexible joint is related to its polar location on the lining ring, and the mixed time integration method can speed-up the calculation process for hybrid FE model with great differences in element sizes.

Originality/value

The orthotropic equivalent assumption is, to the best of the authors’ knowledge, for the first time, used in the 3D simulation of the shield tunnel lining, representing the rigidity discrepancies caused by the structural property.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1980

David Ray, John Gattorna and Mike Allen

Preface The functions of business divide into several areas and the general focus of this book is on one of the most important although least understood of these—DISTRIBUTION. The…

1413

Abstract

Preface The functions of business divide into several areas and the general focus of this book is on one of the most important although least understood of these—DISTRIBUTION. The particular focus is on reviewing current practice in distribution costing and on attempting to push the frontiers back a little by suggesting some new approaches to overcome previously defined shortcomings.

Details

International Journal of Physical Distribution & Materials Management, vol. 10 no. 5/6
Type: Research Article
ISSN: 0269-8218

Article
Publication date: 1 June 1999

N. Potts

The aim of this article is to explore the current European debate over labour market flexibility. First, it considers lessons from economic theory. The classical consensus…

2367

Abstract

The aim of this article is to explore the current European debate over labour market flexibility. First, it considers lessons from economic theory. The classical consensus considering unemployment to be purely voluntary, the Keynesian consensus introducing the concept of demand deficient involuntary unemployment and finally the neo‐classical consensus returning us to the classical viewpoint of the dominance of real conditions in the labour market. In order to proceed without confusion the article provides a clear working definition of the natural rate of unemployment and its three main components, voluntary unemployment, structural unemployment and involuntary unemployment. It then proceed to analyse each of these main components in detail, illustrating the difference between a free market approach and a European Commission approach to reducing each component of unemployment. The article concludes that the future is dependent on all EU citizens as electors of governments and holders of wages to moderate.

Details

European Business Review, vol. 99 no. 3
Type: Research Article
ISSN: 0955-534X

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 1957

THE study of fatigue from a physiological aspect is a field which motion study technicians have made little or no attempt to explore. Shame on their heads. The physiological…

138

Abstract

THE study of fatigue from a physiological aspect is a field which motion study technicians have made little or no attempt to explore. Shame on their heads. The physiological simplification of motions aimed at reducing fatigue could have completely offset the notion that motion study is aimed at converting the operator into an automaton. It may well be that an elaborate motion pattern set‐up designed to simplify the work merely succeeds in setting up stresses in the worker. The superimposing of a time‐studied standard for the job may not have taken into account the adaptation of the speed of motions to the physiological limitations of the operator working at a high level performance. Very few practitioners have attempted to study motions in the factory with a view to reducing fatigue and stress as a prerequisite to studying the set‐up for increased production. Still fewer have attempted to evaluate these factors. It is about time they did.

Details

Work Study, vol. 6 no. 9
Type: Research Article
ISSN: 0043-8022

1 – 10 of over 55000