Search results

1 – 10 of 676
Article
Publication date: 15 May 2018

Osama A.B. Hassan and Christopher Johansson

This paper aims to compare glued laminated timber and steel beams with respect to structural design, manufacturing and assembly costs and the amount of greenhouse gas emissions.

1350

Abstract

Purpose

This paper aims to compare glued laminated timber and steel beams with respect to structural design, manufacturing and assembly costs and the amount of greenhouse gas emissions.

Design/methodology/approach

This paper presents structural design requirements in conformance with EN 1993: Eurocode 5 and Eurocode 3. With the help of these standards, expressions are derived to evaluate the design criteria of the beams. Based on the results of life-cycle analysis, the economic properties and environmental impact of the two types of beam are investigated. In this paper, the effect of beam span on the design values, costs and carbon dioxide emissions is analysed when investigating aspects of the structural design, economy and environmental impact. Different cross-sections are chosen for this purpose.

Findings

The study shows that the glued laminated (abbreviated as “glulam”) beams have a smaller tendency to lateral torsional buckling than the steel beams, and that they can be cheaper. From an environmental point of view, glulam beams are the more environmentally friendly option of the two beam materials. Furthermore, glulam beams may have a direct positive effect on the environment, considering the carbon storage capacity of the wood. The disadvantage of glued wood is that larger dimensions are sometimes required.

Research limitations/implications

Wind load and the effect of second-order effects have not been considered when analysing the static design. Only straight beams have been studied. Furthermore, the dynamic design of the beams has not been investigated, and the bearing pressure capacity of the supports has not been analyzed. We have investigated timber beams with a rectangular cross-section, and steel beams of rolled I-sections, known as “HEA profiles”. The cost analysis is based mainly on the manufacturing and assembly costs prevalent on the Swedish market. The only environmental impact investigated has been the emission of greenhouse gases. The design calculations are based on the European standards Eurocode 5 and Eurocode 3.

Practical implications

To achieve sustainability in construction engineering, it is important to study the environmental and economic consequences of the building elements. By combining these two effects with the technical design of buildings made of steel and/or timber, the concept of sustainable development can be achieved in the long run.

Social implications

The study concerns sustainability of building structures, which is an important of the sustainable development of the society.

Originality/value

The paper contains new information and will be useful to researchers and civil engineers.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 December 2016

H. Kinjo, T. Hirashima, S. Yusa, T. Horio and T. Matsumoto

Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of…

Abstract

Purpose

Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of structural glued laminated timber beams not only during the heating phase during a 1-h standard fire in accordance with ISO 834-1 but also during the cooling phase.

Design/methodology/approach

Heating tests were carried out to confirm the charring rate and the temperature distribution in the cross-section of the beams. Loading tests under fire conditions were carried out to obtain the load-deformation behavior (i.e. the stiffness, maximum load and ductility) of the beam.

Findings

The temperature at the centroid reached approximately 30°C after 1 h and then increased gradually until reaching 110-200°C after 4 h, during the cooling phase. The maximum load of the specimen exposed to a 1-h standard fire was reduced to approximately 30 per cent of that of the specimen at ambient temperature. The maximum load of the specimen exposed to a 1-h standard fire and 3 h of natural cooling in the furnace was reduced to approximately 14 per cent. In case of taking into consideration of the strength reduction at elevated temperature, the reduction ratio of the calculated bending resistance agreed with that of the test results during not only heating phase but also cooling phase.

Originality/value

The results of this study state that it is possible to study on strength reduction in cooling phase for end of heating, timber structural which has not been clarified. It is believed that it is possible to appropriately evaluate the fire performance, including the cooling phase of the timber structural.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 March 2016

Pedro Palma, Andrea Frangi, Erich Hugi, Paulo Cachim and Helena Cruz

This paper aims to present the results of an extensive experimental programme on the fire behaviour of timber beam-to-column shear connections, loaded perpendicularly to the grain.

Abstract

Purpose

This paper aims to present the results of an extensive experimental programme on the fire behaviour of timber beam-to-column shear connections, loaded perpendicularly to the grain.

Design/methodology/approach

The experimental programme comprised tests at normal temperature and loaded fire resistance tests on beam-to-column connections in shear. Twenty-four full-scale tests at normal temperature were performed covering nine different connection typologies, and 19 loaded fire resistance tests were conducted including 11 connections typologies.

Findings

The results of the fire resistance tests show that the tested typologies of steel-to-timber dowelled connections reached more than 30 and even 60 minutes of fire resistance. However, aspects such as a wider gap between the beam and the column, reduced dowel spacing, and the presence of reinforcement with self-drilling screws all have a negative influence on the fire resistance.

Originality/value

The experimental programme addressed the fire behaviour of timber beam-to-column shear connections loaded perpendicularly to the grain in a systematic way testing a wide range of common connection typologies significantly enlarging their experimental background.

Details

Journal of Structural Fire Engineering, vol. 7 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2016

Veronika Hofmann, Martin Gräfe, Norman Werther and Stefan Winter

This paper deals with the fire resistance of primary and secondary beam connections in timber structures.

Abstract

Purpose

This paper deals with the fire resistance of primary and secondary beam connections in timber structures.

Design/methodology/approach

This paper describes a series of unloaded and loaded furnace fire tests in different configurations of these types of connectors.

Findings

The main objective is the fire safety design of joist hangers and full thread screws.

Originality/value

Design recommendations are given.

Details

Journal of Structural Fire Engineering, vol. 7 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 September 2019

Adam Roman Petrycki and Osama (Sam) Salem

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature…

208

Abstract

Purpose

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature of the steel connectors involved in the connection. The purpose of this study is to experimentally investigate the effects of loaded bolt end distance, number of bolt rows, and the existence of perpendicular-to-wood grain reinforcement on the structural fire behavior of semi-rigid glued-laminated timber (glulam) beam-to-column connections that used steel bolts and concealed steel plate connectors.

Design/methodology/approach

In total, 16 beam-to-column connections, which were fabricated in wood-steel-wood bolted connection configurations, in eight large-scale sub-frame test assemblies were exposed to elevated temperatures that followed CAN/ULC-S101 standard time-temperature curve, while being subjected to monotonic loading. The beam-to-column connections of four of the eight test assemblies were reinforced perpendicular to the wood grain using self-tapping screws (STS). Fire tests were terminated upon achieving the failure criterion, which predominantly was dependent on the connection’s maximum allowed rotation.

Findings

Experimental results revealed that increasing the number of bolt rows from two to three, each of two bolts, increased the connection’s time to failure by a greater time increment than that achieved by increasing the bolt end distance from four- to five-times the bolt diameter. Also, the use of STS reinforcement increased the connection’s time to failure by greater time increments than those achieved by increasing the number of bolt rows or the bolt end distance.

Originality/value

The invaluable experimental data obtained from this study can be effectively used to provide insight and better understanding on how mass-timber glulam bolted connections can behave in fire condition. This can also help in further improving the existing design guidelines for mass-timber structures. Currently, beam-to-column wood connections are designed mainly as axially loaded connections with no guidelines available for determining the fire resistance of timber connections exerting any degree of moment-resisting capability.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 21 December 2022

Milad Shabanian and Nicole Leo Braxtan

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled…

Abstract

Purpose

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled connections and CLT beams at ambient temperature (AT), after and during non-standard fire exposure.

Design/methodology/approach

The first set of experiments was performed as a benchmark to find the load-carrying capacity of the assembly and investigate the failure modes at AT. The post-fire performance (PFP) test was performed to investigate the residual strength of the assembly after 30-min exposure to a non-standard fire. The fire-performance (FP) test was conducted to investigate the thermo-mechanical behavior of the loaded assembly during non-standard fire exposure. In this case, the assembly was loaded to 67% of AT load-carrying capacity and partially exposed to a non-standard fire for 75 min.

Findings

Embedment failure and plastic deformation of the dowels in the beam were the dominant failure modes at AT. The load-carrying capacity of the assembly was reduced to 45% of the ambient capacity after 30 min of fire exposure. Plastic bending of the dowels was the principal failure mode, with row shear in the mid-layer of the CLT beam and tear-out failure of the header sides also observed. During the FP test, ductile embedment failure of the timber in contact with the dowels was the major failure mode at elevated temperature.

Originality/value

This paper presents for the first time the thermo-mechanical performance of CLT beam-to-girder connections at three different thermal conditions. For this purpose, the outside layers of the CLT beams were aligned horizontally.

Highlights

  1. Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

  2. Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

  3. Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Article
Publication date: 23 January 2007

Andy van den Dobbelsteen, Martijn Arets and Ricardo Nunes

In order to establish sustainable development, there is a need to focus on solutions effectively improving environmental performance. Effectiveness is the product of significance…

1305

Abstract

Purpose

In order to establish sustainable development, there is a need to focus on solutions effectively improving environmental performance. Effectiveness is the product of significance and improvement potential. For buildings, the supporting structure is the predominant environmental load by materials, hence significant. The purpose of the studies presented in this paper is to determine the improvement potential of the supporting structure of buildings and explore other sustainable solutions effectively enhancing environmental performance.

Design/methodology/approach

For the same office layout, various combinations of structural components at different spans were studied. The environmental load of these variants was determined by means of an life cycle analysis (LCA)‐based model.

Findings

The studies presented in the paper demonstrated an environmental difference by a factor of 5 between the solutions performing worst and best. The optimal combination is the uncommon solution of TT‐slabs with timber beams and columns, expecting to establish an improvement factor of 4 with respect to common practice.

Practical implications

The findings of the studies presented suggest another way of building, with common structural components but whose combination is not common at present.

Originality/value

So far, sustainable building has not focused enough on effective solutions and has had little means to do so. Approaching the supporting structure of buildings rather than small, ineffective adaptations will significantly improve environmental building performance. An elaborate LCA of supporting structures had never been done before. The paper, on the one hand, rationalises sustainable building and, on the other hand, supports effective sustainable design.

Details

Construction Innovation, vol. 7 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 18 April 2018

Hitoshi Kinjo, Yusuke Katakura, Takeo Hirashima, Shuitsu Yusa and Kiyoshi Saito

This paper aims to discuss the fire performance of glulam timber beams based on their deflection behavior and load-bearing period, which were obtained from load-bearing fire tests…

Abstract

Purpose

This paper aims to discuss the fire performance of glulam timber beams based on their deflection behavior and load-bearing period, which were obtained from load-bearing fire tests under constant load conditions.

Design/methodology/approach

In this report, the fire performance, primarily deflection behavior and load-bearing period of glued laminated (glulam) timber beams will be discussed from the standpoint of load-bearing fire tests conducted during the cooling phase under constant load conditions. Then, based on the charring depth and the per section temperature transformation obtained from loading test results, the load-bearing capacity of the glulam timber beams will be discussed using the effective section method and the strength reduction factor, which will be calculated in accordance with the European standards for the design of timber structures (Eurocode 5).

Findings

In the cooling phase, the charring rate is decreases. However, as the temperature in the cross section rises, the deflection is increases. The failure mode was bending failure because of tensile failure of the lamina at the bottom of the beam. Moreover, a gap caused by shear failure in a growth ring in the beam cross-section in the vicinity of the centroid axis was observed. Shear failure was observed up until 1 to 3 h before end of heating. The calculated shear strength far exceeded the test results. Shear strength for elevated temperature of glued laminated timber is likely to decrease than the shear strength in Eurocode 5.

Originality/value

Unlike other elements, a characteristic problem of timber elements is that their load-bearing capacity decreases as they are consumed in a fire, and their bearing capacities may continue to degrade even after the fuel in the room has been exhausted. Therefore, the structural fire performance of timber elements should be clarified during not only the heating phase but also the subsequent cooling phase. However, there are few reports on the load-bearing capacity of timber elements that take the cooling phase after a fire into consideration.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 9 July 2020

Kamila Cabová, Filip Zeman, Lukáš Blesák, Martin Benýšek and František Wald

This paper aims to present a part of a coupled numerical model for prediction the fire resistance of elements in a horizontal furnace. Temperatures calculated inside the timber

Abstract

Purpose

This paper aims to present a part of a coupled numerical model for prediction the fire resistance of elements in a horizontal furnace. Temperatures calculated inside the timber beam are compared to measured values from the fire test.

Design/methodology/approach

The paper presents a part of a coupled numerical model for prediction the fire resistance of elements in a horizontal furnace. The presented part lies in a virtual furnace which simulates temperature environment around tested elements in the furnace. Comparison of results show good agreement in the case when burning of timber is included in the numerical model.

Findings

The virtual furnace presented in this paper allows to calculate temperature environment around three timber beams. After validation of the fire dynamics simulator (FDS) model, the temperature conditions are passed to the FE model which solves heat transfer to the tested element. Temperatures inside the timber beam which are solved in software Atena Science are compared to measured temperatures from the fire test. The comparison of temperatures in three control points shows good accuracy of the calculation in the point closer to the heated edge. An inaccuracy is shown in points located deeper in the beam cross-section – below the char layer.

Research limitations/implications

In conclusion, the virtual furnace has a great potential for investigating the thermal behaviour of fire-resistance tests. A huge advantage inheres in the evaluation of the thermal effect throughout the volume of the furnace, which allows an accurate prediction of fire-resistance tests and evaluation of large number of technical alternatives and boundary conditions. However, passing the temperature field from the FDS model into FE model may decrease the level of accuracy. The solution lies in a coupled CFD-FE model. A weakly coupled model including fluid dynamics, heat transfer and mechanical behaviour is under development at Faculty of Civil Engineering, Czech Technical University in Prague. The fluid dynamics part which is presented in this paper is solved by FDS and the thermo-mechanical part is computed by object-oriented finite element model (OOFEM). The interconnection of both software is made owing to MuPIF python library.

Practical implications

The virtual furnace takes advantage of great possibilities of computational fluid dynamics code FDS. The model is based on an accurate representation of a real fire furnace of fire laboratory PAVUS a.s. located in the Czech Republic. It includes geometry of the real furnace, material properties of the furnace linings, burners, ventilation conditions and tested elements. Gas temperature calculated in the virtual furnace is validated to temperatures measured during a fire test.

Social implications

The virtual furnace has a great potential for investigating the thermal behaviour of fire-resistance tests. A huge advantage inheres in the evaluation of the thermal effect throughout the volume of the furnace, which allows an accurate prediction of fire-resistance tests and evaluation of large number of technical alternatives and boundary conditions.

Originality/value

The virtual furnace has a great potential for investigating the thermal behaviour of fire-resistance tests. A huge advantage inheres in the evaluation of the thermal effect throughout the volume of the furnace, which allows an accurate prediction of fire-resistance tests and evaluation of large number of technical alternatives and boundary conditions. However, passing the temperature field from the FDS model into FE model may decrease the level of accuracy. The solution lies in a coupled CFD-FE model. A weakly coupled model including fluid dynamics, heat transfer and mechanical behaviour is under development at Faculty of Civil Engineering, Czech Technical University in Prague. The fluid dynamics part which is presented in this paper is solved by FDS and the thermo-mechanical part is computed by OOFEM. The interconnection of both software is made thanks to MuPIF python library.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 January 1990

A. Cruden

Outlines the work necessary to refurbish a 200‐year‐old ancientmonument and category ′A′ listed building, for the purposes of providingupgraded facilities to suit the current…

Abstract

Outlines the work necessary to refurbish a 200‐year‐old ancient monument and category ′A′ listed building, for the purposes of providing upgraded facilities to suit the current requirements of the army as a barracks. Examines and assesses the methods considered to strengthen aged timber structures, discussing consolidation, strengthening, replacement and preservation and infestation treatments. Details the materials used to affect the strengthening process and explains the tests made on Epoxy resin and its subsequent uses. Briefly addresses the impact of variations made due to site anomalies – the ′Fort George Factor′.

Details

Structural Survey, vol. 8 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of 676