Search results

1 – 10 of 92
Article
Publication date: 1 February 2016

S. Ali Faghidian

The linear regression technique is widely used to determine empirical parameters of fatigue life profile while the results may not continuously depend on experimental data. Thus…

Abstract

Purpose

The linear regression technique is widely used to determine empirical parameters of fatigue life profile while the results may not continuously depend on experimental data. Thus Tikhonov-Morozov method is utilized here to regularize the linear regression results and consequently reduces the influence of measurement noise without notably distorting the fatigue life distribution. The paper aims to discuss these issues.

Design/methodology/approach

Tikhonov-Morozov regularization method would be shown to effectively reduce the influences of measurement noise without distorting the fatigue life distribution. Moreover since iterative regularization methods are known to be an attractive alternative to Tikhonov regularization, four gradient iterative methods called as simple iteration, minimum error, steepest descent and conjugate gradient methods are examined with an appropriate initial guess of regularized coefficients.

Findings

It has been shown that in case of sparse fatigue life measurements, linear regression results may not have continuous dependence on experimental data and measurement error could lead to misinterpretations of the solution. Therefore from engineering safety point of view, utilizing regularization method could successfully reduce the influence of measurement noise without significantly distorting the fatigue life distribution.

Originality/value

An excellent initial guess for mixed iterative-direct algorithm is introduced and it has been shown that the combination of Newton iterative approach and Morozov discrepancy principle is one of the interesting strategies for determination of regularization parameter having an excellent rate of convergence. Moreover since iterative methods are known to be an attractive alternative to Tikhonov regularization, four gradient descend methods are examined here for regularization of the linear regression problem. It has been found that all of gradient decent methods with an appropriate initial guess of regularized coefficients have an excellent convergence to Tikhonov-Morozov regularization results.

Details

International Journal of Structural Integrity, vol. 7 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 November 2014

Ahmad Mozaffari, Nasser Lashgarian Azad and Alireza Fathi

The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning. Generally, by defining a proper penalty…

Abstract

Purpose

The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning. Generally, by defining a proper penalty function, regularization laws are embedded into the structure of common least square solutions to increase the numerical stability, sparsity, accuracy and robustness of regression weights. Several regularization techniques have been proposed so far which have their own advantages and disadvantages. Several efforts have been made to find fast and accurate deterministic solvers to handle those regularization techniques. However, the proposed numerical and deterministic approaches need certain knowledge of mathematical programming, and also do not guarantee the global optimality of the obtained solution. In this research, the authors propose the use of constraint swarm and evolutionary techniques to cope with demanding requirements of regularized extreme learning machine (ELM).

Design/methodology/approach

To implement the required tools for comparative numerical study, three steps are taken. The considered algorithms contain both classical and swarm and evolutionary approaches. For the classical regularization techniques, Lasso regularization, Tikhonov regularization, cascade Lasso-Tikhonov regularization, and elastic net are considered. For swarm and evolutionary-based regularization, an efficient constraint handling technique known as self-adaptive penalty function constraint handling is considered, and its algorithmic structure is modified so that it can efficiently perform the regularized learning. Several well-known metaheuristics are considered to check the generalization capability of the proposed scheme. To test the efficacy of the proposed constraint evolutionary-based regularization technique, a wide range of regression problems are used. Besides, the proposed framework is applied to a real-life identification problem, i.e. identifying the dominant factors affecting the hydrocarbon emissions of an automotive engine, for further assurance on the performance of the proposed scheme.

Findings

Through extensive numerical study, it is observed that the proposed scheme can be easily used for regularized machine learning. It is indicated that by defining a proper objective function and considering an appropriate penalty function, near global optimum values of regressors can be easily obtained. The results attest the high potentials of swarm and evolutionary techniques for fast, accurate and robust regularized machine learning.

Originality/value

The originality of the research paper lies behind the use of a novel constraint metaheuristic computing scheme which can be used for effective regularized optimally pruned extreme learning machine (OP-ELM). The self-adaption of the proposed method alleviates the user from the knowledge of the underlying system, and also increases the degree of the automation of OP-ELM. Besides, by using different types of metaheuristics, it is demonstrated that the proposed methodology is a general flexible scheme, and can be combined with different types of swarm and evolutionary-based optimization techniques to form a regularized machine learning approach.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 3 October 2019

Magda Joachimiak, Michał Ciałkowski and Andrzej Frąckowiak

The purpose of this paper is to present the method for solving the inverse Cauchy-type problem for the Laplace’s equation. Calculations were made for the rectangular domain with…

Abstract

Purpose

The purpose of this paper is to present the method for solving the inverse Cauchy-type problem for the Laplace’s equation. Calculations were made for the rectangular domain with the target temperature on three boundaries and, additionally, on one of the boundaries, the heat flux distribution was selected. The purpose of consideration was to determine the distribution of temperature on a section of the boundary of the investigated domain (boundary Γ1) and find proper method for the problem regularization.

Design/methodology/approach

The solution of the direct and the inverse (Cauchy-type) problems for the Laplace’s equation is presented in the paper. The form of the solution is noted as the linear combination of the Chebyshev polynomials. The collocation method in which collocation points had been determined based on the Chebyshev nodes was applied. To solve the Cauchy problem, the minimum of functional describing differences between the target and the calculated values of temperature and the heat flux on a section of the domain’s boundary was sought. Various types of the inverse problem regularization, based on Tikhonov and Tikhonov–Philips regularizations, were analysed. Regularization parameter α was chosen with the use of the Morozov discrepancy principle.

Findings

Calculations were performed for random disturbances to the heat flux density of up to 0.01, 0.02 and 0.05 of the target value. The quality of obtained results was next estimated by means of the norm. Effect of the disturbance to the heat flux density and the type of regularization on the sought temperature distribution on the boundary Γ1 was investigated. Presented methods of regularization are considerably less sensitive to disturbances to measurement data than to Tikhonov regularization.

Practical implications

Discussed in this paper is an example of solution of the Cauchy problem for the Laplace’s equation in the rectangular domain that can be applied for determination of the temperature distribution on the boundary of the heated element where it is impossible to measure temperature or the measurement is subject to a great error, for instance on the inner wall of the boiler. Authors investigated numerical examples for functions with singularities outside the domain, for which values of gradients change significantly within the calculation domain what corresponds to significant changes in temperature on the wall of the boiler during the fuel combustion.

Originality/value

In this paper, a new method for solving the Cauchy problem for the Laplace’s equation is described. To solve this problem, the Chebyshev polynomials and nodes were used. Various types of regularization of this problem were considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 October 2018

F. Li, M. Soleimani and J. Abascal

Magnetic induction tomography (MIT) is a tomographic imaging technique with a wide range of potential industrial applications. Planar array MIT is a convenient setup but unable to…

Abstract

Purpose

Magnetic induction tomography (MIT) is a tomographic imaging technique with a wide range of potential industrial applications. Planar array MIT is a convenient setup but unable to access freely from the entire periphery as it only collects measurements from one surface, so it remains challenging given the limited data. This study aims to assess the use of sparse regularization methods for accurate position and depth detection in planar array MIT.

Design/methodology/approach

The most difficult challenges in MIT are to solve the inverse and forward problems. The inversion of planar MIT is severely ill-posed due to limited access data. Thus, this paper posed a total variation (TV) problem and solved it efficiently with the Split Bregman formulation to overcome this difficulty. Both isotropic and anisotropic TV formulations are compared to Tikhonov regularization with experimental MIT data.

Findings

The results show that Tikhonov method failed or underestimated the object position and depth. Both isotropic and anisotropic TV led to accurate recovery of depth and position.

Originality/value

There are numerous potential applications for planar array MIT where access to the materials under testing is restrict. Sparse regularization methods are a promising approach to improving depth detection for limited MIT data.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 1995

Lorraine G. Olson and Robert D. Throne

We compare a recently proposed generalized eigensystem approach and anew modified generalized eigensystem approach to more widely used truncatedsingular value decomposition and…

Abstract

We compare a recently proposed generalized eigensystem approach and a new modified generalized eigensystem approach to more widely used truncated singular value decomposition and zero‐order Tikhonov regularization for solving multidimensional elliptic inverse problems. As a test case, we use a finite element representation of a homogeneous eccentric spheres model of the inverse problem of electrocardiography. Special attention is paid to numerical issues of accuracy, convergence, and robustness. While the new generalized eigensystem methods are substantially more demanding computationally, they exhibit improved accuracy and convergence compared with widely used methods and offer substantially better robustness.

Details

Engineering Computations, vol. 12 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…

1202

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 16 November 2010

Hua‐Peng Chen and Nenad Bicanic

The paper aims to identify both the location and severity of damage in complex framed buildings using limited noisy vibration measurements. The study aims to directly adopt…

Abstract

Purpose

The paper aims to identify both the location and severity of damage in complex framed buildings using limited noisy vibration measurements. The study aims to directly adopt incomplete measured mode shapes in structural damage identification and effectively reduce the influence of measurement errors on predictions of structural damage.

Design/methodology/approach

Damage indicators are properly chosen to reflect both the location and severity of damage in framed buildings at element level for braces and at critical point level for beams and columns. Basic equations for an iterative solution procedure are provided to be solved for the chosen damage indicators. The Tikhonov regularisation method incorporating the L‐curve criterion for determining the regularisation parameter is employed to produce stable and robust solutions for damage indicators.

Findings

The proposed method can correctly assess the quantification of structural damage at specific locations in complex framed buildings using only limited information on modal data measurements with errors, without requiring mode shape expansion techniques or model reduction processes.

Research limitations/implications

Further work may be needed to improve the accuracy of inverse predictions for very small structural damage from noisy measurements.

Practical implications

The paper includes implications for the development of reliable techniques for rapid and on‐line damage assessment and health monitoring of framed buildings.

Originality/value

The paper offers a practical approach and procedure for correctly detecting structural damage and assessing structural condition from limited noisy vibration measurements.

Details

Engineering Computations, vol. 27 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 June 2020

Adam Basílio, Fran Sérgio Lobato and Fábio de Oliveira Arouca

The study of heat transfer mechanisms is an area of great interest because of various applications that can be developed. Mathematically, these phenomena are usually represented…

Abstract

Purpose

The study of heat transfer mechanisms is an area of great interest because of various applications that can be developed. Mathematically, these phenomena are usually represented by partial differential equations associated with initial and boundary conditions. In general, the resolution of these problems requires using numerical techniques through discretization of boundary and internal points of the domain considered, implying a high computational cost. As an alternative to reducing computational costs, various approaches based on meshless (or meshfree) methods have been evaluated in the literature. In this contribution, the purpose of this paper is to formulate and solve direct and inverse problems applied to Laplace’s equation (steady state and bi-dimensional) considering different geometries and regularization techniques. For this purpose, the method of fundamental solutions is associated to Tikhonov regularization or the singular value decomposition method for solving the direct problem and the differential Evolution algorithm is considered as an optimization tool for solving the inverse problem. From the obtained results, it was observed that using a regularization technique is very important for obtaining a reliable solution. Concerning the inverse problem, it was concluded that the results obtained by the proposed methodology were considered satisfactory, as even with different levels of noise, good estimates for design variables in proposed inverse problems were obtained.

Design/methodology/approach

In this contribution, the method of fundamental solution is used to solve inverse problems considering the Laplace equation.

Findings

In general, the proposed methodology was able to solve inverse problems considering different geometries.

Originality/value

The association between the differential evolution algorithm and the method of fundamental solutions is the major contribution.

Article
Publication date: 1 April 2014

Davood Rostamy and Kobra Karimi

The purpose of this paper is to introduce a novel approach based on the high-order matrix derivative of the Bernstein basis and collocation method and its employment to solve an…

Abstract

Purpose

The purpose of this paper is to introduce a novel approach based on the high-order matrix derivative of the Bernstein basis and collocation method and its employment to solve an interesting and ill-posed model in the heat conduction problems, homogeneous backward heat conduction problem (BHCP).

Design/methodology/approach

By using the properties of the Bernstein polynomials the problems are reduced to an ill-conditioned linear system of equations. To overcome the unstability of the standard methods for solving the system of equations an efficient technique based on the Tikhonov regularization technique with GCV function method is used for solving the ill-condition system.

Findings

The presented numerical results through table and figures demonstrate the validity and applicability and accuracy of the technique.

Originality/value

A novel method based on the high-order matrix derivative of the Bernstein basis and collocation method is developed and well-used to obtain the numerical solutions of an interesting and ill-posed model in heat conduction problems, homogeneous BHCP with high accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2011

Yi Heng, Maka Karalashvili, Adel Mhamdi and Wolfgang Marquardt

The purpose of this paper is to present an efficient algorithm based on a multi‐level adaptive mesh refinement strategy for the solution of ill‐posed inverse heat conduction…

Abstract

Purpose

The purpose of this paper is to present an efficient algorithm based on a multi‐level adaptive mesh refinement strategy for the solution of ill‐posed inverse heat conduction problems arising in pool boiling using few temperature observations.

Design/methodology/approach

The stable solution of the inverse problem is obtained by applying the conjugate gradient method for the normal equation method together with a discrepancy stopping rule. The resulting three‐dimensional direct, adjoin and sensitivity problems are solved numerically by a space‐time finite element method. A multi‐level computational approach, which uses an a posteriori error estimator to adaptively refine the meshes on different levels, is proposed to speed up the entire inverse solution procedure.

Findings

This systematic approach can efficiently solve the large‐scale inverse problem considered without losing necessary detail in the estimated quantities. It is shown that the choice of different termination parameters in the discrepancy stopping conditions for each level is crucial for obtaining a good overall estimation quality. The proposed algorithm has also been applied to real experimental data in pool boiling. It shows high computational efficiency and good estimation quality.

Originality/value

The high efficiency of the approach presented in the paper allows the fast processing of experimental data at many operating conditions along the entire boiling curve, which has been considered previously as computationally intractable. The present study is the authors' first step towards a systematic approach to consider an adaptive mesh refinement for the solution of large‐scale inverse boiling problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 92