Search results

1 – 2 of 2
Article
Publication date: 12 March 2018

Q. Wan, Y.M. Chen, H.D. Liu and B. Yang

Ti-Si-N coating with nanocomposite structure is a promising protective coating for cutting tools which will be subject to high temperature oxidation during service. This study…

178

Abstract

Purpose

Ti-Si-N coating with nanocomposite structure is a promising protective coating for cutting tools which will be subject to high temperature oxidation during service. This study aims to investigate the thermal stability of Ti-Si-N coatings and lays the foundation for its application in high speed dry cutting.

Design/methodology/approach

Nanocomposite Ti-Si-N coating was deposited on stainless substrate and silicon wafer (100) by Ti90Si10 alloy target by using cathodic arc ion plating. The microstructure of Ti-Si-N coating had been detected by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

Findings

The results suggested that the coating was TiN nanocrystals with a diameter of 6.3 nm surrounded by amorphous Si3N4. The oxidation test was conducted under 550, 650, 750, 800, 850, 900 and 950°C for 2 h. The structure evolution was observed by Scanning electron microscope (SEM), energy dispersive spectrum (EDS), XRD and XPS. The results indicated that rutile has been formed at 650°C, while Si3N4 began to oxidized at 800°C. The grain size of TiN increased from 6.3 to 13 nm as the samples oxidized from 550 to 800. Micro-crack also formed in samples oxidized over 900°C.

Originality/value

Ti-Si-N coating, in this study, was deposited by cathodic arc ion plating using alloy target at high-bias voltage. The oxidation temperature ranged from 500 to 950°C with TiN coating as reference.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 August 2021

Mengjuan Yin, Wenping Liang, Qiang Miao, Shiwei Zuo, Haiyang Yu and Jiale Cheng

This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN…

Abstract

Purpose

This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN) interlayer on the magnetron-sputtered AlTiSiN coating was also investigated in detail.

Design/methodology/approach

The double-glow plasma alloying (DGPA) and magnetron sputtering (MS) techniques were combined as a new approach to realize a bilayer on TA15 consisting of an AlTiSiN layer with a PN interlayer. A TiN interlayer was formed via co-diffusion during the PN conducted at 1050°C for 3 h.

Findings

The PN interlayer can effectively improve the adhesion between coating and matrix; the PN/AlTiSiN coating presented excellent adhesion (80.1 N) and anti-wear property with a nano-hardness of 18.62 GPa. The resulting three-dimensional wear-track morphology exhibited a shallow depth and a narrow width.

Originality/value

The novel combination of the DGPA and MS technologies, using an infiltration layer rather than a coating one as the intermediate layer, can effectively enhance the adhesion between AlTiSiN coating and TA15 matrix. Meanwhile, the gradient layer can effectively improve both surface bearing and wear resistance.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2