Search results

1 – 10 of over 4000
Article
Publication date: 5 June 2019

Gang Li, Shuo Jia and Hong-Nan Li

The purpose of this paper is to make a theoretical comprehensive efficiency evaluation of a nonlinear analysis method based on the Woodbury formula from the efficiency of the…

Abstract

Purpose

The purpose of this paper is to make a theoretical comprehensive efficiency evaluation of a nonlinear analysis method based on the Woodbury formula from the efficiency of the solution of linear equations in each incremental step and the selected iterative algorithms.

Design/methodology/approach

First, this study employs the time complexity theory to quantitatively compare the efficiency of the Woodbury formula and the LDLT factorization method which is a commonly used method to solve linear equations. Moreover, the performance of iterative algorithms also significantly effects the efficiency of the analysis. Thus, the three-point method with a convergence order of eight is employed to solve the equilibrium equations of the nonlinear analysis method based on the Woodbury formula, aiming to improve the iterative performance of the Newton–Raphson (N–R) method.

Findings

First, the result shows that the asymptotic time complexity of the Woodbury formula is much lower than that of the LDLT factorization method when the number of inelastic degrees of freedom (IDOFs) is much less than that of DOFs, indicating that the Woodbury formula is more efficient for local nonlinear problems. Moreover, the time complexity comparison of the N–R method and the three-point method indicates that the three-point method is more efficient than the N–R method for local nonlinear problems with large-scale structures or a larger ratio of IDOFs number to the DOFs number.

Originality/value

This study theoretically evaluates the efficiency of nonlinear analysis method based on the Woodbury formula, and quantitatively shows the application condition of the comparative methods. The comparison result provides a theoretical basis for the selection of algorithms for different nonlinear problems.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 January 2022

B. Raja Rajeshwari and M.V.N. Sivakumar

Fracture properties of concrete are mainly influenced by specimen shape, size and type of testing method. The study aims to identify the characteristic divergence in fracture …

Abstract

Purpose

Fracture properties of concrete are mainly influenced by specimen shape, size and type of testing method. The study aims to identify the characteristic divergence in fracture – evaluating testing methods, i.e. three-point bend test and wedge splitting test for fibrous self-compacting concrete.

Design/methodology/approach

A total of nine mixes with three different coarse aggregate sizes (20, 16 and 12.5mm) and three coarse to fine aggregate quantities (40–60, 45–55 and 50–50) were considered to examine the influence of materials on fracture parameters of fibrous self-compacting concrete. For three-point bend test, size effect method was considered to analyze the fracture properties.

Findings

The experimental investigation revealed that fracture energy calculated from wedge splitting test was reasonably on higher side for maximum coarse aggregate-based specimens for all coarse to fine aggregate quantities, while for the size effect method, fracture energy value was maximum for least coarse aggregate sized specimens.

Originality/value

The fracture properties of fibrous self-compacting concrete obtained from wedge splitting test method was higher than the size effect method. This is due to the consideration of only peak load for determining the fracture properties in size effect method analysis.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 May 2016

J I Ramos

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods

Abstract

Purpose

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods for the solution of the inviscid generalized regularized long-wave (GRLW) equation subject to initial Gaussian conditions.

Design/methodology/approach

Two implicit second- and fourth-order accurate finite difference methods and three Runge-Kutta procedures are introduced. The methods employ a new dependent variable which contains the wave amplitude and its second-order spatial derivative. Numerical experiments are reported for several temporal and spatial step sizes in order to assess their accuracy and the preservation of the first two invariants of the inviscid GRLW equation as functions of the spatial and temporal orders of accuracy, and thus determine the conditions under which grid-independent results are obtained.

Findings

It has been found that the steepening of the wave increase as the nonlinearity exponent is increased and that the accuracy of the fourth-order Runge-Kutta method is comparable to that of a second-order implicit procedure for time steps smaller than 100th, and that only the fourth-order compact method is almost grid-independent if the time step is on the order of 1,000th and more than 5,000 grid points are used, because of the initial steepening of the initial profile, wave breakup and solitary wave propagation.

Originality/value

This is the first study where an accuracy assessment of wave breakup of the inviscid GRLW equation subject to initial Gaussian conditions is reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 January 2014

Nina Jamar, Alenka Šauperl and David Bawden

The purpose of this study was to examine whether the logical structure of abstracts in the areas of materials science and technology and library and information science comply…

2421

Abstract

Purpose

The purpose of this study was to examine whether the logical structure of abstracts in the areas of materials science and technology and library and information science comply with the ISO 214 or IMRAD formats, while also suggesting guidelines for components of abstracts.

Design/methodology/approach

In the first part of the research the components of abstracts are analysed. The results showed that not all the proposed structural elements are present in the abstracts. Therefore also the improved prototypes and recommended abstracts are developed to examine the satisfaction of readers with different forms of abstracts. According to the results of satisfaction of readers with different forms of abstracts, uniform guidelines for the components of abstracts in accordance with the IMRAD format are proposed.

Findings

The introduction (I) should include three sentences of background information. The method (M) should include three sentences of method. The results (R) should include three sentences of results. The discussion (D) should include two sentences of conclusions. The conclusions should present the implications of the results on subjects that were not part of the study, suggestions for possible application of the findings, suggestions for further research work and an evaluation of the research.

Originality/value

It is important to emphasize that even if the guidelines for writing abstracts by the individual journal exist, authors do not always take them into account. Therefore, it is important that the abstracts that are actually published in journals were analysed. It is also important that the opinion of researchers was taken into account.

Details

New Library World, vol. 115 no. 1/2
Type: Research Article
ISSN: 0307-4803

Keywords

Article
Publication date: 22 March 2021

Dongmin Li, Guofang Ma and Jia Li

It is essential to level the drilling platform across which a drilling robot travels in a slant underground coal mine tunnel to ensure smooth operation of the drill rod. However…

Abstract

Purpose

It is essential to level the drilling platform across which a drilling robot travels in a slant underground coal mine tunnel to ensure smooth operation of the drill rod. However, existing leveling methods do not provide dynamic performance under the drilling conditions of the underground coal mine. A four-point dynamic leveling algorithm is presented in this paper based on the platform attitude and support rod displacement (DLAAD). An experimental drilling robot demonstrates its dynamic leveling capability and ability to ensure smooth drill rod operations.

Design/methodology/approach

The attitude coordinate of the drilling robot is established according to its structure. A six-axis combined sensor is adopted to detect the platform attitude, thus revealing the three-axis Euler angles. The support rod displacement values are continuously detected by laser displacement sensors to obtain the displacement increment of each support rod as needed. The drilling robot is leveled according to the current support rod displacement and three-dimensional (3 D) attitude detected by the six-axis combined sensor dynamically.

Findings

Experimental results indicate that the DLAAD algorithm is correct and effectively levels the drilling platform dynamically. It can thus provide essential support in resolving drill rod sticking problems during actual underground coal mine drilling operations.

Practical implications

The DLAAD algorithm supports smooth drill rod operations in underground coal mines, which greatly enhances safety, reduces power consumption, and minimizes cost. The approach proposed here thus represents considerable benefits in terms of coal mine production and shows notable potential for application in similar fields.

Originality/value

The novel DLAAD algorithm and leveling control method are the key contributions of this work, they provide dynamical 3 D leveling and help to resolve drill rod sticking problems.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 August 2013

Xiaoxiao Zhu and Qixin Cao

The purpose of the present paper is to propose a full model‐based method for distance‐mapping calibration for the non‐SVP (non‐single viewpoint) catadioptric camera of the soccer…

Abstract

Purpose

The purpose of the present paper is to propose a full model‐based method for distance‐mapping calibration for the non‐SVP (non‐single viewpoint) catadioptric camera of the soccer robot. The method should be easy to operate, efficient, accurate, and scalable to fit larger field sizes.

Design/methodology/approach

The distance‐mapping model was first constructed based on the imaging principle. The authors then calibrated the internal parameters using the mirror boundary and used the mirror center to choose the correct pose from two possible solutions. The authors then proposed a three‐point method based on a unique solution case of the non‐SVP P3P (perspective‐three‐point) problem to solve the external parameters. Lastly, they built the distance mapping by back‐projection.

Findings

The simulation experimental results have shown that the authors' method is very accurate even when there is severe misalignment between the mirror and the camera and that all calibration operations, except the calibration of a standard camera, can be completed in 1 min. The result of the comparison with the traditional calibration method shows that the authors' method is superior to the traditional method in terms of accuracy and efficiency.

Originality/value

The proposed calibration method is scalable to larger fields because it only uses the boundary of the mirror and three feature points on the field, and does not need additional calibration objects. Additionally, an automatic calibration method that can be used during the game can be easily developed based on this method. Moreover, the proposed mirror‐pose‐selection method and a unique solution to the non‐SVP P3P problem are especially useful for a non‐SVP catadioptric camera.

Details

Industrial Robot: An International Journal, vol. 40 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 February 2020

J.I. Ramos

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise…

Abstract

Purpose

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise analytical solutions in space, compare it with other finite-difference discretizations and assess the effects of advection and reaction on both 1D and two-dimensional (2D) problems.

Design/methodology/approach

A conservative method of lines based on the piecewise analytical integration of the two-point boundary value problems that result from the local solution of the advection-diffusion operator subject to the continuity of the dependent variables and their fluxes at the control volume boundaries is presented. The method results in nonlinear first-order, ordinary differential equations in time for the nodal values of the dependent variables at three adjacent grid points and triangular mass and source matrices, reduces to the well-known exponentially fitted techniques for constant coefficients and equally spaced grids and provides continuous solutions in space.

Findings

The conservative method of lines presented here results in three-point finite difference equations for the nodal values, implicitly treats the advection and diffusion terms and is unconditionally stable if the reaction terms are implicitly treated. The method is shown to be more accurate than other three-point, exponentially fitted methods for nonlinear problems with interior and/or boundary layers and/or source/reaction terms. The effects of linear advection in 1D reacting flow problems indicates that the wave front steepens as it approaches the downstream boundary, whereas its back corresponds to a translation of the initial conditions; for nonlinear advection, the wave front exhibits steepening but the wave back shows a linear dependence on space. For a system of two nonlinearly coupled, 2D ADR equations, it is shown that a counter-clockwise rotating vortical field stretches the spiral whose tip drifts about the center of the domain, whereas a clock-wise rotating one compresses the wave and thickens its arms.

Originality/value

A new, conservative method of lines that implicitly treats the advection and diffusion terms and provides piecewise-exponential solutions in space is presented and applied to some 1D and 2D advection reactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2019

J.I. Ramos

The purpose of this paper is to develop a new transversal method of lines for one-dimensional reactiondiffusion equations that is conservative and provides piecewise–analytical…

Abstract

Purpose

The purpose of this paper is to develop a new transversal method of lines for one-dimensional reactiondiffusion equations that is conservative and provides piecewise–analytical solutions in space, analyze its truncation errors and linear stability, compare it with other finite-difference discretizations and assess the effects of the nonlinear diffusion coefficients, reaction rate terms and initial conditions on wave propagation and merging.

Design/methodology/approach

A conservative, transversal method of lines based on the discretization of time and piecewise analytical integration of the resulting two-point boundary-value problems subject to the continuity of the dependent variables and their fluxes at the control-volume boundaries, is presented. The method provides three-point finite difference expressions for the nodal values and continuous solutions in space, and its accuracy has been determined first analytically and then assessed in numerical experiments of reaction-diffusion problems, which exhibit interior and/or boundary layers.

Findings

The transversal method of lines presented here results in three-point finite difference equations for the nodal values, treats the diffusion terms implicitly and is unconditionally stable if the reaction terms are treated implicitly. The method is very accurate for problems with the interior and/or boundary layers. For a system of two nonlinearly-coupled, one-dimensional reactiondiffusion equations, the formation, propagation and merging of reactive fronts have been found to be strong function of the diffusion coefficients and reaction rates. For asymmetric ignition, it has been found that, after front merging, the temperature and concentration profiles are almost independent of the ignition conditions.

Originality/value

A new, conservative, transversal method of lines that treats the diffusion terms implicitly and provides piecewise exponential solutions in space without the need for interpolation is presented and applied to someone.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2019

Cheng Xu, Z.W. Zhong and W.K. Choi

The fan-out wafer level package (FOWLP) becomes more and more attractive and popular because of its flexibility to integrate diverse devices into a very small form factor. The…

Abstract

Purpose

The fan-out wafer level package (FOWLP) becomes more and more attractive and popular because of its flexibility to integrate diverse devices into a very small form factor. The strength of ultrathin FOWLP is low, and the low package strength often leads to crack issues. This paper aims to study the strength of thin FOWLP because the low package strength may lead to the reliability issue of package crack.

Design/methodology/approach

This paper uses the experimental method (three-point bending test) and finite element method (ANSYS simulation software) to evaluate the FOWLP strength. Two theoretical models of FOWLP strength are proposed. These two models are based on the location of FOWLP initial fracture point.

Findings

The results show that the backside protection tape does not have the ability to enhance the FOWLP strength, and the strength of over-molded structure FOWLP is superior to that of other structure FOWLPs with the same thickness level.

Originality/value

There is ample research about the silicon strength and silicon die strength. However, there is little research about the package level strength and no research about the FOWLP strength. The FOWLP is made up of various materials. The effect of individual component and external environment on the FOWLP strength is uncertain. Therefore, the study of strength behavior of FOWLP is significant.

Details

Microelectronics International, vol. 36 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 25 March 2020

Alena Pietrikova, Tomas Lenger, Olga Fricova, Lubos Popovic and Lubomir Livovsky

This study aims to characterize a novel glass/epoxy architecture sandwich structure for electronic boards. Understanding the thermo-mechanical behavior of these composites is…

Abstract

Purpose

This study aims to characterize a novel glass/epoxy architecture sandwich structure for electronic boards. Understanding the thermo-mechanical behavior of these composites is important because it is possible to pre-determine whether defined “internal” thick laminates will be suitable for embedding components in the direction of the axis “z,” i.e. this method of manufacturing multilayer laminates can be used for incoming miniaturization in electronics.

Design/methodology/approach

Laminates with a low glass transition temperature (Tg) and high Tg with E-glass type were treated, tested and compared. Testing samples were manufactured by nonstandard two steps unidirectional lamination as a multilayer structure based on prepreg layers and as “a sandwich structure” to explore its effect on thermo-mechanical properties. The proposed tested method determines the time and temperature-dependent viscoelastic properties of the board by using dynamic mechanical analysis, thermo-mechanical analysis and three-point bend tests.

Findings

This testing method was chosen because the main property that promotes sandwich structure is their high stiffness. Glass/epoxy stiff and thermal stabile sandwich structure prepared by nonstandard two-stage lamination is proper for embedding components and the next miniaturization in electronics.

Originality/value

Compared with by-default applied glass-reinforced homogenous laminates, novel architecture sandwich structure is attractive because of a combination of strength, stiffness and all while maintaining the miniaturization requirement and multifunctional application in electronics.

Details

Microelectronics International, vol. 37 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 4000