Search results

1 – 10 of 18
To view the access options for this content please click here
Article
Publication date: 8 November 2019

Mohsen Karimi, Mohammad Pichan, Mehdi Sadri and Seyed Morteza Seyedjafari

This paper aims to investigate an improved control method and digital signal processor-based (DSP-based) digital implementation of three-phase standalone inverter. The…

Abstract

Purpose

This paper aims to investigate an improved control method and digital signal processor-based (DSP-based) digital implementation of three-phase standalone inverter. The proposed method is performance developed of the proportional-resonant controller (PRC) with harmonic injection technique, aiming to improve load voltages quality under different loads, especially nonlinear loads. The advanced proposed multi-loop controller is consisted of current harmonic loops for suppressing odd harmonic, which are analyzed in discrete-time domain. Besides, the voltage loop is also used to compensate the output capacitor voltage.

Design/methodology/approach

The proposed method can effectively enlarge output voltage stability with low total harmonics distortion and improve the dynamic transient response. The other advantage of the proposed PRC is the injection of the selective harmonic without any additional calculation compensator.

Findings

The method is given the opportunity to be controlled exactly all harmful outputs with high-quality voltage referenced of the standalone inverter. The proposed method is implemented using a DSP processor (TMS320F28335) and is verified on the 10 kVA three-phase standalone inverter prototype.

Originality/value

The proposed method is performance developed of the PRC with harmonic injection technique, aiming to improve load voltages quality under different loads, especially nonlinear loads.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 26 July 2021

Vikash Gurugubelli and Arnab Ghosh

The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power…

Abstract

Purpose

The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance.

Design/methodology/approach

In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid.

Findings

The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.

Research limitations/implications

In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work.

Originality/value

The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 20 June 2020

Fossy Mary Chacko, Ginu Ann George, Jayan M.V. and Prince A.

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid…

Abstract

Purpose

This paper aims to propose an improved multifunctional control strategy for achieving real, reactive power flow control and the mitigation of power quality issues in grid integrated photovoltaic (GIPV) systems.

Design/methodology/approach

The paper proposes a dual stage, three phase, multifunctional GIPV system with modified instantaneous reactive power (IRP) theory-based and modified synchronous reference frame (SRF) theory-based control algorithms for reference template generation with continuous load power requirement tracking. The control structure is designed so as to impart virtual distribution static compensator functionality to the photovoltaic inverter. The dual mode operation in active filter and renewable power injection modes provides enhanced capability to the GIPV system. A comprehensive evaluation of the dynamic behaviour of the GIPV system is carried out for various conditions of irradiance and load under MATLAB/Simulink platform. The performance comparison is done considering an uncompensated system and the GIPV system with both proposed control algorithms.

Findings

The extensive simulation results demonstrate that the proposed modified SRF theory-based multifunctional control strategy shows superior performance in real and reactive power flow control; reduction in real and reactive burden of the utility grid; and regulation of dc bus voltage under varying scenarios of irradiance and load. Furthermore, there is improvement of grid power factor and reduction in total harmonic distortion of grid currents in compliance with the IEEE 519 standard even with highly non-linear loads at the point of common coupling.

Originality/value

The proposed modified SRF theory-based multifunctional controller offers a viable solution for power quality enhancement as well as the realization of effective real and reactive power flow control in GIPV systems. Thus, the penetration level of distributed generation can be increased in this era of global energy crisis.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a…

Downloads
1598

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2021

Swati Sucharita Pradhan, Raseswari Pradhan and Bidyadhar Subudhi

The dynamics of the PV microgrid (PVMG) system are highly nonlinear and uncertain in nature. It is encountered with parametric uncertainties and disturbances. This system…

Abstract

Purpose

The dynamics of the PV microgrid (PVMG) system are highly nonlinear and uncertain in nature. It is encountered with parametric uncertainties and disturbances. This system cannot be controlled properly by conventional linear controllers. H controller and sliding mode controller (SMC) may capable of controlling it with ease. Due to its inherent dynamics, SMC introduces unwanted chattering into the system output waveforms. This paper aims to propose a controller to reduce this chattering.

Design/methodology/approach

This paper presents redesign of the SMC by modifying its sliding surface and tuning its parameters by employing water-evaporation-optimization (WEO) based metaheuristic algorithm.

Findings

By using this proposed water-evaporation-optimization algorithm-double integral sliding mode controller (WEOA-DISMC), the chattering magnitude is diminished greatly. Further, to examine which controller between H8 controller and proposed WEOA-DISMC performs better in both normal and uncertain situations, a comparative analysis has been made in this paper. The considered comparison parameters are reference tracking, disturbance rejection and robust stability.

Originality/value

WEO tuned DISMC for PVMG system is the contribution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 4 January 2011

Grzegorz Iwanski

Wind‐diesel sets offered as a reliable hybrid isolated power systems with reduction of fuel consumption, consists of variable speed wind turbines and fixed speed diesel…

Abstract

Purpose

Wind‐diesel sets offered as a reliable hybrid isolated power systems with reduction of fuel consumption, consists of variable speed wind turbines and fixed speed diesel engines. Load and wind energy variations cause, that the load power of the diesel genset is varied in wide range. Fixed speed generation set operates with the best efficiency only in a narrow range of the load, therefore implementation of a load adaptive, adjustable speed genset may additionally reduce fuel consumption.

Design/methodology/approach

Analysis of the system components model, simulation and laboratory tests on a small‐scale model.

Findings

Topology and output voltage control method of four‐wire adjustable speed autonomous wind‐diesel system dedicated for isolated power plants with high wind penetration.

Research limitations/implications

The paper presents only part of the work which has to be done for the complete system. Load and energy management has to be applied in standalone system, as not in each operating point of proposed wind‐diesel system, can rated load be supplied. To fully prove the proposed system and control concept, tests of megawatt range system are advisable. To evaluate the fuel saving, a real wind and load profile in a selected isolated place is needed.

Practical implications

Every adjustable speed generation systems can save fuel. However, proposed topology in main part consists of known and implemented solutions, therefore costs of the new installation will not be increased significantly.

Originality/value

Proposed costs effective topology of adjustable speed wind‐diesel generation system has not been presented by any other authors. Standalone operation of doubly fed induction generator system is rarely reported in the papers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 3 December 2020

Yaxing Ren, Saqib Jamshed Rind and Lin Jiang

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can…

Abstract

Purpose

A standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause the voltage unbalance condition and additional power loss that reduces the cycle life of battery. This paper proposes an energy management strategy for the battery/supercapacitor (SC) hybrid energy storage system (HESS) to improve the transient performance of bus voltage under unbalanced load condition in a standalone AC microgrid (MG).

Design/methodology/approach

The SC has high power density and much more cycling times than battery and thus to be controlled to absorb the transient and unbalanced active power as well as the reactive power under unbalanced condition. Under the proposed energy management design, the battery only needs to generate balanced power to balance the steady state power demand. The energy management strategy for battery/SC HESS in a standalone AC MG is validated in simulation study using PSCAD/EMTDC.

Findings

The results show that the energy management strategy of HESS maintains the bus voltage and eliminates the unbalance condition under single-phase load. In addition, with the SC to absorb the reactive power and unbalanced active power, the unnecessary power loss in battery is reduced with shown less accumulate depth of discharge and higher average efficiency.

Originality/value

With this technology, the service life of the HESS can be extended and the total cost can be reduced.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three…

Downloads
8343

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for wind‐turbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power wind‐turbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity wind‐turbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 29 April 2014

Baidy Touré, Laurent Gerbaud, Jean-Luc Schanen and Régis Ruelland

The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet…

Abstract

Purpose

The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet synchronous machine fed by a six-phase voltage inverter with PMW control), using optimization for both sizing and sensibility analyses.

Design/methodology/approach

The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies.

Findings

The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies.

Research limitations/implications

The power electronics load is supposed to be a set of predefined harmonic sources, obtained by experiment or time simulation plus fast fourier transformation before the optimization process.

Practical implications

The problem has numerous constraints on the components, mainly technological constraints. The volume is minimized, respecting electromagnetic standards and an electro magnetic interference filter prototype has been made.

Originality/value

The frequency model is automatically generated. A complex aircraft application has been studied thanks to the approach. Several sensibility analyses have been carried out. An EMC filter has been sized and an experimental prototype has been made, comforting the sizing by optimization.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 4 December 2019

N.S. Suresh, Manish Kumar and S. Arul Daniel

The researchers and policy makers worldwide have proposed many ideas for smart cities and homes in urban areas. The extensive work done for urban smart homes neglects the…

Downloads
105

Abstract

Purpose

The researchers and policy makers worldwide have proposed many ideas for smart cities and homes in urban areas. The extensive work done for urban smart homes neglects the unique constraints of homes at remote mountain tops and deserts and rural village homes. The purpose of this paper is to propose a smart energy management system for a self-sustained home of any type situated in any geographical location with the availability of renewable energy sources like solar, etc. The purpose is mainly to highlight the importance and advantages of direct current (DC) homes with DC loads rather than a conventional alternating current (AC) home with both AC and DC loads. An attempt has been made to evolve a multi-agent coordinated control for the low voltage direct current (LVDC) smart home system.

Design/methodology/approach

LVDC supply systems with in situ power generation are providing an efficient solution for the energy needs of a DC smart home. The individual sub-systems of the LVDC system have their unique functions and priorities and hence require both coordinated and independent control. The entire DC smart home system is modeled in the Matlab and codes are implemented for each agent of the home. LVDC grid is operating either in battery connected mode or utility grid-connected mode, and the DC link voltage is held constant in both the cases. Energy imported from the utility grid is minimized by load shedding during the rectifier mode of the bidirectional converter. In addition, load shedding is also done when the battery is discharging to increase the discharge time of the battery. Load shedding is done on the basis of a fixed priority of loads. A 48 s simulation is performed on the Matlab model to bring out the 24-hour operation of the proposed system. Various modes are simulated and the corresponding actions of the agents are tested.

Findings

A new control strategy with agents for each sub-system of the LVDC system is presented. Each individual agent works in tandem with other agents and meets its own control imperatives without compromising the requirements of the overall system. Unlike the centralized control system, the proposed control strategy is a distributed control system. The control algorithm for each of the agents is developed, and the pseudo code is presented. The results of the simulation of the proposed scheme are presented to confirm the usefulness of the new control approach.

Originality/value

The multi-agent concept for an energy management system is less addressed and thus its potential for efficient home energy management is presented. The proposed multi-agent strategy for a complete DC smart home with exclusive DC loads is not done earlier and is reported for the first time. The success of this strategy can be extended to other DC micro-grid systems like telecom power systems, ships, aircraft, datacentres, server rooms, residential complexes and commercial malls.

Details

Smart and Sustainable Built Environment, vol. 9 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 18