Search results

1 – 10 of over 16000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 September 2019

Jiaqi Lyu and Souran Manoochehri

The purpose of this paper is to improve the accuracy of fused deposition modeling (FDM) machines.

Abstract

Purpose

The purpose of this paper is to improve the accuracy of fused deposition modeling (FDM) machines.

Design/methodology/approach

An integrated error model and compensation methods are developed to improve the accuracy of FDM machines. The effects of machine-dependent and process-dependent errors are included in this integrated model. The error model is then used to obtain compensated values for the printed object. A three-dimensional artifact is designed for the FDM machine characterization. This process takes place only once and an error model for the machine is then developed. An artifact is designed that is feature rich and its coordinates are measured by the coordinate measuring machine (CMM). The CMM digitized values for the three-dimensional artifact are used to calculate the coefficients of the model. The integrated error model of the machine can be used to obtain the compensated values for any given part models. The coefficients of the integrated error model are machine-dependent and represent machine error estimation. To demonstrate this, two test examples are used and modified based on the machine model to verify the effectiveness of the proposed method.

Findings

The errors from machine mechanical structure and process are evaluated. The variation trend of each error is analyzed. The uncompensated and compensated models are compared, and the effectiveness of the integrated error model and compensation method is analyzed and validated.

Originality/value

An effective integrated error model with compensation is developed, which can be used to improve the FDM machines accuracy.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2005

Stewart Dickson

This paper aims to present new work on a topic/which has received very little attention.

1312

Abstract

Purpose

This paper aims to present new work on a topic/which has received very little attention.

Design/methodology/approach

Rapid prototyping technology is used to provide access to 3D computer graphics and visualization for people with visual disabilities. Software and techniques for composing DotsPlus(tm) Braille text in a three‐dimensional computer‐aided design (CAD) and rapid prototyping system are presented.

Findings

Vision‐limited people and people with cognitive or learning disabilities can benefit from casting the results of scientific computing into physical form using rapid prototyping.

Research limitations/implications

Not much is known about the extent of three‐dimensional spatial cognition in people with the kinds of disabilities who might benefit from this work. The argument for this application of rapid prototyping remains to be tested in a laboratory or classroom environment. The manufacturing principles in a limited test scenario are presented here. Work remains to be done to develop software in order to manufacture polygon mesh models from an arbitrary scientific visualization via rapid prototyping with tactile captions applied.

Practical implications

The CAD modeling and rapid prototyping innovations suggested in this paper will create pedagogical models, which are sufficiently robust to withstand the classroom and will lower the cost of producing and distributing these models.

Originality/value

Rapid prototyping has only been used on three documented occasions in the past to create experimental models of scientific information for the blind. There has been no attempt prior to now to integrate captions with these tactile models. These models have not been in general use for education of persons with visual, cognitive or learning disabilities.

Details

Rapid Prototyping Journal, vol. 11 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 January 2018

Haihua Zhu and Jing Li

Three-dimensional digital design and manufacturing technology are changing the current manufacturing pattern and have become the core of enterprise competition. However, the…

Abstract

Purpose

Three-dimensional digital design and manufacturing technology are changing the current manufacturing pattern and have become the core of enterprise competition. However, the research and application of three-dimensional digital technology in the present phase have a strong bias toward the design of three-dimensional model and focus little on process planning. It restricts the development of manufacturing industry. Therefore, this paper aims to present a design scheme of three-dimensional digital process planning.

Design/methodology/approach

A three-dimensional digital process design method is developed by combining model-based definition technology and knowledge engineering technology. Model-based definition technology is used to display the process information. And knowledge engineering technology is used for process decision; meanwhile, ontology technology is introduced to describe process knowledge. And taking shaft part as an example, this paper establishes the general ontology of manufacturing process and the special ontology of shaft. This research provides an available method for the three-dimensional digital process planning.

Findings

Traditional process planning mainly is based on two-dimensional engineering drawing, which leads to the low efficiency and quality of process planning. Moreover, it cannot achieve effective mining and management of knowledge. Thus, applying an effective knowledge management technology into a three-dimensional process system is necessary.

Research limitations/implications

This paper contributes to an available method for three-dimensional digital process planning.

Originality/value

The introduction of model-based definition technology makes process information display in three-dimensional environment. And ontology technology achieves sematic reference and efficient management of process knowledge.

Details

Kybernetes, vol. 47 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 July 2021

Shuai Yang, Wenjie Zhao, Yongzhen Ke, Jiaying Liu and Yongjiang Xue

Due to the inability to directly apply an intra-oral image with esthetic restoration to restore tooth shape in the computer-aided design system, this paper aims to propose a…

Abstract

Purpose

Due to the inability to directly apply an intra-oral image with esthetic restoration to restore tooth shape in the computer-aided design system, this paper aims to propose a method that can use two-dimensional contours obtained from the image for the three-dimensional dental mesh model restoration.

Design/methodology/approach

First, intra-oral image and smiling image are taken from the patient, then teeth shapes of the images are designed based on esthetic restoration concepts and the pixel coordinates of the teeth’s contours are converted into the vertex coordinates in the three-dimensional space. Second, the dental mesh model is divided into three parts – active part, passive part and fixed part – based on the teeth’s contours of the mesh model. Third, the vertices from the teeth’s contours of the dental model are matched with ones from the intra-oral image and with the help of matching operation, the target coordinates of each vertex in the active part can be calculated. Finally, the Laplacian-based deformation algorithm and mesh smoothing algorithm are performed.

Findings

Benefitting from the proposed method, the dental mesh model with esthetic restoration can be quickly obtained based on the intra-oral image that is the result of doctor-patient communication. Experimental results show that the quality of restoration meets clinical needs, and the typical time cost of the method is approximately one second. So the method is both time-saving and user-friendly.

Originality/value

The method provides the possibility to design personalized dental esthetic restoration solutions rapidly.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2010

A.K. Singh and Regalla Srinivasa Prakash

The purpose of this paper is to investigate the transient three‐dimensional temperature distribution for a laser sintered duraform fine polyamide part by a moving Gaussian laser…

1010

Abstract

Purpose

The purpose of this paper is to investigate the transient three‐dimensional temperature distribution for a laser sintered duraform fine polyamide part by a moving Gaussian laser beam. The primary objective of the present paper is to develop computationally efficient numerical simulation technique with the commercially available finite element software domain for the accurate prediction of the temperature history and heat‐affected zones of the laser sintered parts so as to finally obtain the density of the sintered sample.

Design/methodology/approach

The paper proposes a mathematical model of scanning by moving laser beam and sintering sub‐model. Based on the mathematical models, a simulation model was developed by using author written subroutines in ANSYS® 11.0, a general purpose finite element software. The simulation model was then run at experimental designed points using two‐level factorial design of experiments (DOE) approach. The data thus generated were used to predict the equation for the density of sintered part in terms of process parameters using Design Expert software in order to analyse the designed experiments.

Findings

Laser power and scan spacing were found to be significant parameters affecting the part density. Amongst the interaction terms, significant effect of laser power was found on the part density at the lower settings of the scan velocity. Temperature‐time plots were generated to study the transient temperature distribution for the sintering process and with further applicability to study the thermal stresses.

Research limitations/implications

The simulation model hence developed can be used for only simple part geometries and cannot be generalised for any complex geometry.

Originality/value

The paper presents a simulation model which is integrated with a DOE approach so as to develop a robust as well as simple and fast approach for the optimization of quality objective.

Details

Rapid Prototyping Journal, vol. 16 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2604

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2000

Tae Jin Kang and Sung Min Kim

An automatic garment pattern generation system has been developed for the three‐dimensional apparel CAD system. To substitute the garment fitting process, which requires lots of…

1250

Abstract

An automatic garment pattern generation system has been developed for the three‐dimensional apparel CAD system. To substitute the garment fitting process, which requires lots of trial and error in the traditional pattern generation methods, we developed a new direct pattern generation method using body‐garment shape matching process. In this method, we first generated a body model using three‐dimensionally measured anthropometric data and transformed it to have a convex shape similar to that of a commonly used dummy model in garment design process. Then a typical garment model has been defined by measuring the surface information of a dummy model using stereoscopy and adjusting its shape considering the geometrical constraints of the underlying body model to obtain the optimum fit garment patterns. Finally, we developed a pattern flattening algorithm that flattens the three‐dimensionally adjusted garment model into two‐dimensional patterns considering the anisotropic properties of the fabric to be used.

Details

International Journal of Clothing Science and Technology, vol. 12 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 June 2016

Athanasios Bouboulas and Nikolaos Anifantis

– The purpose of this paper is to investigate the effect of crack surfaces contact on the post-buckling behavior of a slender column with a non-propagating crack.

Abstract

Purpose

The purpose of this paper is to investigate the effect of crack surfaces contact on the post-buckling behavior of a slender column with a non-propagating crack.

Design/methodology/approach

In this paper a 3D finite element model has been implemented to study the post-buckling behavior of a slender column with a non-propagating crack. According to this model, the column is discretized into three-dimensional solid elements. Contact conditions are considered between the crack surfaces. The non-linear equations for this model are solved using an incremental-iterative procedure, and the equilibrium path of the cracked column is extracted.

Findings

Load-displacement curves are presented for a cantilever column with a transverse surface crack of either uniform or non-uniform depth across the column cross-section. For both crack shapes, the load-displacement curves are presented for various values of crack depth and position. The results of this study are in good agreement with the results available in the literature. Comparisons with the results of the always-open crack were performed. The post-buckling behavior of a column with a uniform depth crack is more sensitive to variations in crack depth and position than the post-buckling behavior of a column with a non-uniform depth crack.

Originality/value

A 3D finite element approach for the post-buckling behavior of a transversely cracked column including contact between crack surfaces.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 16000