Search results

1 – 10 of 58
Article
Publication date: 25 January 2023

Sudev Dutta and Payal Bansal

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any…

Abstract

Purpose

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any parachute manufacturing industry and its components under varying operational conditions. Hence, the knowledge of various textile materials and operational conditions which contributes the parachute strength and durability will be helpful for industries/researchers.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Parachute is a material used in numerous real-time applications such as man-drop, cargo delivery, aircraft recovery and aircraft decelerator which drastically reduces human efforts and time. However, each application requires a unique design and fabric selection to achieve the area of drag needed and the terminal velocity of the parachute material while in flight. For designing a man-drop parachute, the most critical parameters are weight and strength which must be considered during manufacturing. The army person uses the man-drop parachute, which must be as light as possible.

Originality/value

This paper is an original review work and will be helpful for parachute manufacturers/researchers to enhance the life of parachutes with improved functionality.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2024

Sabiha Sezgin Bozok

This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these…

Abstract

Purpose

This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these applications on the photocatalytic and mechanical properties of the fabric.

Design/methodology/approach

Different aqueous dispersions which contain anatase, rutile and brookite were prepared at three different concentrations (5%, 10% and 15%). These NPs were embedded in cotton fabrics by using GPTS [(3-glycidyloxypropyl) trimethoxysilane]. Characterization tests were performed by scanning electron microscopy (SEM), Raman and Fourier-transform infrared spectroscopy (FT/IR). Samples were stained with methylene blue (MB) and then exposed to solar light for different periods. Color changes of the samples were examined with a spectrophotometer. Air permeability, abrasion and tear strength tests were applied to all samples.

Findings

According to SEM images, the NPs were successfully attached to the cotton fabrics, and epoxy silane coating surrounded the fiber surfaces. The presence of the coating was also confirmed by Raman spectroscopy and FT/IR. The treatments reduced the stainability of the samples. The most effective applications for ensuring photocatalytic activity in cotton fabrics were suspensions as 10% brookite, 10% anatase and 5% anatase, in descending order. The applied coating slightly reduced the samples’ air permeability, and wear and tear strength.

Originality/value

The importance of this study is to determine the optimal crystal phase and its concentration by using epoxy silane to ensure self-cleaning properties on cotton fabrics. The sample treated with 10% brookite is the most approached its original white color by 99.65% as a result of degradation of MB (after 120 min). On the other hand, using the pure rutile with epoxy silane was not suitable for removing MB from the fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 May 2023

Soliyana Gebeyaw, Kura Alemayehu Beyene, Eradu Seid, Zemzem Mustofa and Gideon K. Rotich

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Abstract

Purpose

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Design/methodology/approach

The manufactured fabrics were evaluated for their tensile strength, drapeability, bending length by weight and color fastness to light. And finally, an analysis of variance was done for each parameter.

Findings

As the percent of PVA with a vinyl acrylic solution and the number of layers increased, the tensile strength, drape coefficient (percent), bending length (cm), and color fastness to light increased in both directions. The percent of PVA with a vinyl acrylic solution and the number of layers are statistically significant for each response such as tensile strength, drape coefficient (percent), bending length (cm), color fastness to light and water repellency at a 95% confidence interval. Tensile strength, drape coefficient (%) and bending length (cm) are always greater in the warp direction than in the weft direction. The tensile strength, drape coefficient (percent), bending length (cm) and color fastness to light of treated fabrics samples are greater than those of the untreated fabrics.

Originality/value

The factory waste fabrics can be recycled into window shutters which will provide the cheaper raw material for window shutter manufacturers.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 22 March 2023

Elvira Sarybayeva, Meruert Kuramysova, Mirabzal Mukimov, Mukhamejan Shardarbek, Zhansaule Rakhmanova, Kamshat Makhanbetaliyeva, Farkhad Tashmukhamedov, Indira Jurinskaya and Marzhan Kalmakhanova

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical…

Abstract

Purpose

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical properties of knitted fabrics.

Design/methodology/approach

The number of miss stitches and tuck stitches was increased from 3.6% to 8.3%, and the influence of this increase on knitwear properties was analyzed.

Findings

It was found that an increase from 3.6% to 8.3% leads to a decrease in the stretchability of knitwear in width from 330% to 290% and in length from 112% to 95%. With an increase from 5% to 6.3%, the surface density of knitwear decreases by 11.6 g. And with an increase from 6.3% to 8.3%, the surface density of knitwear decreases by 11.8 g. It was also found that the presence of miss stitches and tuck stitches in the knit structure reduces the material consumption, and the presence of miss stitches increases the shape stability of the knitted fabric.

Originality/value

It was concluded that the number of miss stitches and tuck stitches has the strongest influence on surface density, followed by volume density.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 March 2024

Isaac S. Awuye and Daniel Taylor

In 2018, the International Financial Reporting Standard 9-Financial Instruments became mandatory, effectively changing the underlying accounting principles of financial…

Abstract

Purpose

In 2018, the International Financial Reporting Standard 9-Financial Instruments became mandatory, effectively changing the underlying accounting principles of financial instruments. This paper systematically reviews the academic literature on the implementation effects of IFRS 9, providing a coherent picture of the state of the empirical literature on IFRS 9.

Design/methodology/approach

The study thrives on a systematic review approach by analyzing existing academic studies along the following three broad categories: adoption and implementation, impact on financial reporting, and risk management and provisioning. The study concludes by providing research prospects to fill the identified gaps.

Findings

We document data-related issues, forecasting uncertainties and the interaction of IFRS 9 with other regulatory standards as implementation challenges encountered. Also, we observe cross-country heterogeneity in reporting quality. Furthermore, contrary to pre-implementation expectations, we find improvement in risk management. This suggests that despite the complexities of the new regulatory standard on financial instruments, it appears to be more successful in achieving the intended objective of enhancing better market discipline and transparency rather than being a regulatory overreach.

Originality/value

As the literature on IFRS 9 is burgeoning, we provide state-of-the-art guidance and direction for researchers with a keen interest in the economic significance and implications of IFRS 9 adoption. The study identifies gaps in the literature that require further research, specifically, IFRS 9 adoption and firm’s hedging activities, IFRS 9 implications on non-financial firms. Lastly, existing studies are mostly focused on Europe and underscore the need for more research in under-researched jurisdictions, particularly in Asia and Africa. Also, to standard setters, policymakers and practitioners, we provide some insight to aid the formulation and application of standards.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 July 2023

Shashi Prakash Dwivedi

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of…

Abstract

Purpose

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of grinding sludge (GS) waste, which is disposed into the earth. The accumulation of this waste in dump yards causes an increase in soil and air pollution levels.

Design/methodology/approach

In the current investigation, an effort was made to use this waste GS for the progress of aluminum-based composite. To maintain uniform distribution of reinforcing material, the friction stir processing technique was used.

Findings

The characterization based on the SEM image of the Al/GS composite revealed that uniform dispersal of reinforcement content can be attained in a single tool pass. Number of grains/inch was approximately 2,402. XRD of GS powder confirmed the presence of SiO2, Fe2O3, Al2O3 and CaO phases. These phases proved GS to be a better reinforcement with aluminum alloy. Tensile strength and hardness were significantly improved in comparison to the aluminum alloy. Thermal expansion and corrosion weight loss were evaluated to observe the influence of GS addition.

Originality/value

The studies proved that the use of GS as reinforcement material can help in curbing the menace of soil pollution to a large extent.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 58