Search results

1 – 10 of over 2000
Article
Publication date: 6 January 2012

R. Ellahi and M. Hameed

The purpose of this paper is to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third

Abstract

Purpose

The purpose of this paper is to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third grade fluid in a channel. The principal question the authors address in this paper is in regard to the applicability of the no‐slip condition at a solid‐liquid boundary. The authors present the effects of slip, magnetohydrodynamics (MHD) and heat transfer for the plane Couette, plane Poiseuille and plane Couette‐Poiseuille flows in a homogeneous and thermodynamically compatible third grade fluid. The problem of a non‐Newtonian plane Couette flow, fully developed plane Poiseuille flow and Couette‐Poiseuille flow are investigated.

Design/methodology/approach

The present investigation is an attempt to study the effects of nonlinear partial slip on the walls for steady flow and heat transfer of an incompressible, thermodynamically compatible third grade fluid in a channel. A very effective and higher order numerical scheme is used to solve the resulting system of nonlinear differential equations with nonlinear boundary conditions. Numerical solutions are obtained by solving nonlinear ordinary differential equations using Chebyshev spectral method.

Findings

Due to the nonlinear and highly complicated nature of the governing equations and boundary conditions, finding an analytical or numerical solution is not easy. The authors obtained numerical solutions of the coupled nonlinear ordinary differential equations with nonlinear boundary conditions using higher order Chebyshev spectral collocation method. Spectral methods are proven to offer a superior intrinsic accuracy for derivative calculations.

Originality/value

To the best of the authors' knowledge, no such analysis is available in the literature which can describe the heat transfer, MHD and slip effects simultaneously on the flows of the non‐Newtonian fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2020

Lijun Zhang, Muhammad Mubashir Bhatti and Efstathios E. Michaelides

The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of…

Abstract

Purpose

The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of electric and magnetic fields. The flow medium between the plates is porous. The effects of Joule heating and viscous energy dissipation are studied in the present study.

Design/methodology/approach

A semi-analytical/numerical method, the differential transform method, is used to obtain solutions for the system of the nonlinear differential governing equations. This solution technique is efficient and may be adapted to solve a variety of nonlinear problems in simple geometries, as it was confirmed by comparisons between the results using this method and those of a fully numerical scheme.

Findings

The results of the computations show that the Darcy–Brinkman–Forchheimer parameter and the third-grade fluid model parameter retards, whereas both parameters have an inverse effect on the temperature profile because the viscous dissipation increases. The presence of the magnetic field also enhances the temperature profile between the two plates but retards the velocity profile because it generates the opposing Lorenz force. A graphical comparison with previously published results is also presented as a special case of this study.

Originality/value

The obtained results are new and presented for the first time in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 March 2015

Daniel Oluwole Makinde and Oswald Franks

The purpose of this paper is to investigate the unsteady magnetohydrodynamic (MHD) Couette flow of an electrically conducting incompressible non-Newtonian third grade reactive…

Abstract

Purpose

The purpose of this paper is to investigate the unsteady magnetohydrodynamic (MHD) Couette flow of an electrically conducting incompressible non-Newtonian third grade reactive fluid with temperature-dependent variable viscosity and thermal conductivity properties under isothermal surface conditions.

Design/methodology/approach

The coupled non-linear partial differential equations for momentum and energy balance governing the transient problem are obtained and tackled numerically using a semi-discretization finite difference technique.

Findings

The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal stability conditions are presented graphically and discussed quantitatively.

Practical implications

The approach is applicable to modelling the complex physical phenomenon in MHD lubrications that occurs in numerous areas of engineering and industrial processes.

Originality/value

This paper may be of industrial and engineering interest especially in understanding the combined effects of unsteadiness, variable thermophysical properties and magnetic field on the thermal stability condition for a reactive non-Newtonian third grade fluid under Couette flow scenario.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 January 2012

Precious Sibanda, Sandile Motsa and Zodwa Makukula

The purpose of this paper is to study the steady laminar flow of a pressure driven thirdgrade fluid with heat transfer in a horizontal channel. The study serves two purposes: to…

Abstract

Purpose

The purpose of this paper is to study the steady laminar flow of a pressure driven thirdgrade fluid with heat transfer in a horizontal channel. The study serves two purposes: to correct the inaccurate results presented in Siddiqui et al., where the homotopy perturbation method was used, and to demonstrate the computational efficiency and accuracy of the spectral‐homotopy analysis methods (SHAM and MSHAM) in solving problems that arise in fluid mechanics.

Design/methodology/approach

Exact and approximate analytical series solutions of the non‐linear equations that govern the flow of a steady laminar flow of a third grade fluid through a horizontal channel are constructed using the homotopy analysis method and two new modifications of this method. These solutions are compared to the full numerical results. A new method for calculating the optimum value of the embedded auxiliary parameter ∼ is proposed.

Findings

The “standard” HAM and the two modifications of the HAM (the SHAM and the MSHAM) lead to faster convergence when compared to the homotopy perturbation method. The paper shows that when the same initial approximation is used, the HAM and the SHAM give identical results. Nonetheless, the advantage of the SHAM is that it eliminates the restriction of searching for solutions to the nonlinear equations in terms of prescribed solution forms that conform to the rule of solution expression and the rule of coefficient ergodicity. In addition, an alternative and more efficient implementation of the SHAM (referred to as the MSHAM) converges much faster, and for all parameter values.

Research limitations/implications

The spectral modification of the homotopy analysis method is a new procedure that has been shown to work efficiently for fluid flow problems in bounded domains. It however remains to be generalized and verified for more complicated nonlinear problems.

Originality/value

The spectral‐HAM has already been proposed and implemented by the authors in a recent paper. This paper serves the purpose of verifying and demonstrating the utility of the new spectral modification of the HAM in solving problems that arise in fluid mechanics. The MSHAM is a further modification of the SHAM to speed up converge and to allow for convergence for a much wider range of system parameter values. The utility of these methods has not been tested and verified for systems of nonlinear equations. For this reason as much emphasis has been placed on proving the reliability and validity of the solution techniques as on the physics of the problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

M.M. Rashidi, T. Hayat, M. Keimanesh and A.A. Hendi

The purpose of this paper is to discuss the natural convection flow of an incompressible third grade fluid between two parallel plates. The basic equations governing the flow are…

Abstract

Purpose

The purpose of this paper is to discuss the natural convection flow of an incompressible third grade fluid between two parallel plates. The basic equations governing the flow are reduced to a nonlinear ordinary differential equation.

Design/methodology/approach

The resulting nonlinear ordinary differential equation is solved by multi‐step differential transform method (MDTM).

Findings

The obtained solutions in comparison with the numerical solutions (fourth‐order Runge‐Kutta) admit a remarkable accuracy.

Originality/value

The analysis illustrates the validity and the great potential of the MDTM in solving nonlinear differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

Tirivanhu Chinyoka and Daniel Oluwole Makinde

The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is…

Abstract

Purpose

The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions.

Design/methodology/approach

The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods.

Findings

The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer.

Originality/value

The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2020

Asha Shivappa Kotnurkar and Deepa C. Katagi

The current paper investigates the bioconvective third-grade nanofluid flow containing gyrotactic organisms with Copper-blood nanoparticles in permeable walls.

Abstract

Purpose

The current paper investigates the bioconvective third-grade nanofluid flow containing gyrotactic organisms with Copper-blood nanoparticles in permeable walls.

Design/methodology/approach

The equations governing the flow are solved by adopting the Adomian decomposition method.

Findings

The results show that the biconvection Peclet number decreases the density of motile microorganisms, and the Rayleigh number also decreases the velocity profile.

Practical implications

The present study can be applied to design the higher generation microsystems.

Originality/value

To the best of the authors’ knowledge, no such investigation has been carried out in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 July 2020

Mohsen Javanmard, Mohammad Hasan Taheri, Nematollah Askari, Hakan F. Öztop and Nidal Abu-Hamdeh

The purpose of this paper is to investigate the hydromagnetic third-grade non-Newtonian fluid flow and heat transfer between two coaxial pipes with a variable radius ratio.

Abstract

Purpose

The purpose of this paper is to investigate the hydromagnetic third-grade non-Newtonian fluid flow and heat transfer between two coaxial pipes with a variable radius ratio.

Design/methodology/approach

To solve the approximate nonlinear and linear problems with variable coefficients, a trial function was applied. Methods include collocation, least square and Galerkin that can be applied for obtaining these coefficients.

Findings

It is revealed that an increase of the non-Newtonian parameter, Hartmann number, and radius ratio leads to an augmentation of the absolute value of the dimensionless velocity, temperature, velocity gradient, and temperature gradient of about 10-60%. Further, the augmentation of Bi1 reduces the absolute value of the dimensionless temperature profile and dimensionless temperature gradient about three to four times; hence, the dimensionless heat transfer rate reduces. However, the growth of Bi2 has a contrary impact. Besides, the increase of Pr and Ec leads to an increase in the dimensionless temperature profile and dimensionless temperature gradient; therefore, the dimensionless heat transfer rate increases.

Originality/value

The convection heat transfer on the walls of the pipes is considered, and the nonlinear coupled momentum and energy equations are solved using the least squared method and collocation methods, respectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

M. Nawaz, A Zeeshan, R Ellahi, S Abbasbandy and Saman Rashidi

The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic…

Abstract

Purpose

The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic algorithm (GA). The main emphasis is to find the analytical and numerical solutions for the said mathematical model. The work undertaken is a blend of numerical and analytical studies. Effects of active parameters such as: Hartmann number, Prandtl number, Eckert number, Nusselt number, Skin friction and dimensionless fluids parameters on the flow and heat transfer characteristics have been examined by graphs and tables. Compression is also made with the existing benchmark results.

Design/methodology/approach

Analytical solutions of non-linear coupled equations are developed by optimal homotopy analysis method (OHAM). A very effective and higher order numerical scheme hybrid GA and Nelder-Mead optimization Algorithms are used for numerical investigations.

Findings

An excellent agreement with the existing results in limiting sense is noted. It is observed that the radial velocity is an increasing function of dimensionless material parameters α 1, α 2 and β. Temperature increases by increasing the values of M, Pr, Ec and γ. Non-Newtonian parameter β has similar effects on skin friction coefficient and Nusselt number. The wall heat transfer rate is a decreasing function of A and ß whereas it increases by increasing conjugate parameter γ.

Originality/value

The problem under consideration has been widely studied by many investigators due to its importance and engineering applications. But most of the studies as the authors have documented are for Newtonian or viscous fluids. But no such analysis is available in the literature which can describe the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of GA.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Amer Rasheed, Rab Nawaz, Sohail Ahmed Khan, Hanifa Hanif and Abdul Wahab

– The purpose of this paper is to study the thin film flow of a fourth grade fluid subject to slip conditions in order to understand its velocity profile.

Abstract

Purpose

The purpose of this paper is to study the thin film flow of a fourth grade fluid subject to slip conditions in order to understand its velocity profile.

Design/methodology/approach

An exact expression for flow velocity is derived in terms of hyperbolic sine functions. The practical usage of the exact flow velocity is restrictive as it involves very complicated integrals. Therefore, an approximate solution is also derived using a Galerkin finite element method and numerical error analysis is performed.

Findings

The behavior of fluid velocity with respect to various flow parameters is discussed. The results are not restrictive to small values of flow parameters unlike those obtained earlier using homotopy analysis method and homotopy perturbation method.

Originality/value

An approximate solution based on finite element technique is derived.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000