Search results

1 – 10 of over 1000
Article
Publication date: 28 March 2023

Minting Wang, Renjie Cao, HuiChao Chang and Dong Liang

Laser-based powder bed fusion (LPBF) is a new method for forming thin-walled parts, but large cooling rates and temperature gradients can lead to large residual stresses and…

Abstract

Purpose

Laser-based powder bed fusion (LPBF) is a new method for forming thin-walled parts, but large cooling rates and temperature gradients can lead to large residual stresses and deformations in the part. This study aims to reduce the residual stress and deformation of thin-walled parts by a specific laser rescanning strategy.

Design/methodology/approach

A three-dimensional transient finite element model is established to numerically simulate the LPBF forming process of multilayer and multitrack thin-walled parts. By changing the defocus amount, the laser in situ annealing process is designed, and the optimal rescanning parameters are obtained, which are verified by experiments.

Findings

The results show that the annealing effect is related to the average surface temperature and scan time. When the laser power is 30 W and the scanning speed is 20 mm/s, the overall residual stress and deformation of the thin-walled parts are the smallest, and the in situ annealing effect is the best. When the annealing frequency is reduced to once every three layers, the total annealing time can be reduced by more than 60%.

Originality/value

The research results can help better understand the influence mechanism of laser in situ annealing process on residual stress and deformation in LPBF and provide guidance for reducing residual stress and deformation of LPBF thin-walled parts.

Article
Publication date: 18 November 2021

Liaoyuan Chen, Tianbiao Yu, Ying Chen and Wanshan Wang

The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system.

Abstract

Purpose

The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system.

Design/methodology/approach

In this study, a novel method of the adaptive slicing method and DMD process with feedback adjustment of deposition height has been developed to successively fabricate complex inclined thin-walled square tube elbow parts. The defocus amount was used as a variable to the matching between the deposition thickness and the adaptive slicing height.

Findings

The low relative error of dimensional accuracy between experimental and designed parts shows that the matching of the single-layer deposition thickness and the adaptive slicing height can be realized by optimizing the defocusing amount. The negative feedback of the thin-wall part height can be achieved when the defocus amount and the z-axis increment are less than deposition thickness. The improvement of dimensional accuracy of inclined thin-walled parts is also attributed to the optimized scanning strategy.

Practical implications

The slicing method and deposition process can provide technical guidance for other additive manufacturing (AM) systems to fabricate metal thin-walled parts with high dimensional accuracy because the feedback control of deposition height can be realized only by the optimized process.

Originality/value

This study provides a novel adaptive slice method and corresponding the deposition process, and expands the slicing method of AM metal parts.

Article
Publication date: 22 July 2019

Farui Du, Jinqian Zhu, Xueping Ding, Qi Zhang, Honglin Ma, Jie Yang, Hongzhong Cao, Zemin Ling, Guoyu Wang, Xuanming Duan and Shuqian Fan

A wire-based additive manufacturing system works with high manufacturing efficiency and low dimensional precision. The purpose of this paper is to study the dimensional…

452

Abstract

Purpose

A wire-based additive manufacturing system works with high manufacturing efficiency and low dimensional precision. The purpose of this paper is to study the dimensional characteristics of Ti-6Al-4V thin-walled parts with wire-based multi-laser additive manufacturing in vacuum.

Design/methodology/approach

Wire-based multi-laser additive manufacturing was carried out to understand the effect brought from different parameters. The Ti-6Al-4V thin-walled parts were formed by different height increments, power inputs and inter-layer cooling times in vacuum.

Findings

The result shows that, with the number of layers increment, the layer width of thin-walled part increases gradually in the beginning and stabilizes soon afterward. Height increment, laser power and inter-layer cooling time could affect the energy input to the deposited bead and heat accumulation of thin-walled part. The layer width decreases, while the height increment increases. The increment of laser power could increase the layer width. And, the increment of inter-layer cooling time (more than 5 s) has little effect on the layer width.

Originality/value

The heat dissipation mode of thin-walled parts in vacuum and the influence of different parameters on layer width are explained in this paper. It provides a reference for further understanding and controlling dimension precision of Ti-6Al-4V thin-walled part with wire-based multi-laser additive manufacturing in vacuum. At the same time, it provides a reference for researches of dimensional characteristics in the additive manufacturing industry.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2019

Yifeng Li, Xunpeng Qin, Qiang Wu, Zeqi Hu and Tan Shao

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the…

344

Abstract

Purpose

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the potential of 6-DOF industrial robots and improve the power of additive manufacturing, this paper aims to present a method to fabricate curved overhanging thin-walled parts free from turn table and support structures.

Design/methodology/approach

Five groups of straight inclined thin-walled parts with different angles were fabricated with the torch aligned with the inclination angle using RWAAM, and the angle precision was verified by recording the growth of each layer in both horizontal and vertical directions; furthermore, the experimental phenomena was explained with the force model of the molten pool and the forming characteristics was investigated. Based on the results above, an algorithm for fabricating curved overhanging thin-walled part was presented and validated.

Findings

The force model and forming characteristics during the RWAAM process were investigated. Based on the result, the influence of the torch orientation on the weld pool flow was used to control the pool flow, then a practical algorithm for fabricating curved overhanging thin-walled part was proposed and validated.

Originality/value

Regarding the fabrication of curved overhanging thin-walled parts, given the influences of the torch angles on the deposited morphology, porosity formation rate and weld pool flow, the flexibility of 6-DOF industrial robot was fully used to realize instant adjustment of the torch angle. In this paper, the deposition point and torch orientation of each layer of a robotic fabrication path was determined by the contour equation of the curve surface. By adjusting the torch angle, the pool flow was controlled and better forming quality was acquired.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 September 2013

Bin He, Dichen Li, Anfeng Zhang, Zhongliang Lu, Jiangbo Ge and Doan Tat Khoa

The purpose of this paper is to investigate the influence of the oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming (LMDF)…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming (LMDF).

Design/methodology/approach

Thin-walled cylinders were fabricated in protective atmosphere with different oxygen contents in order to reveal the influence of oxidation on the morphology of cracks. The influence of oxidation on the cracks was investigated in detail by measuring the wall thicknesses of cylinders, the residual stress in the top surface of the cylinders and the composition of the cracks. Finally, the validity of the results was verified by fabricating a thin-walled turbine blade in protective atmosphere.

Findings

The experimental results showed that wall thickness fluctuation of cylinders, unequal residual stress distribution of cylinders and the oxides in the crack were all the critical factors which led to crack of DZ125L thin-walled parts. Thin-walled turbine blades with no cracks can be fabricated when the oxygen content was about less than 150 ppm in protective atmosphere.

Research limitations/implications

The appropriate oxygen content in protective atmosphere is helpful for fabricating thin-walled parts of nickel-based superalloy like DZ125L, and the results can show what will happen at different oxygen levels. Moreover, the results show that the cracks can be eliminated as the oxygen content reduce to less than 150 ppm rather less than 10 ppm or even less, which can reduce the cost of protective gas as forming thin-walled parts of nickel-based superalloy such as DZ125L.

Practical implications

The appropriate oxygen content in protective atmosphere is helpful for fabricating thin-walled parts of nickel-based superalloy like DZ125L. However, when heavy solid parts of some other material other than DZ125L were fabricated, the oxygen content of less than 150 ppm may be not suitable.

Originality/value

The influence of oxidation on the cracks of DZ125L thin-walled parts in LMDF was investigated in detail, and a DZ125L thin-walled turbine blade with no cracks was fabricated by adjusting the oxygen content in protective atmosphere.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 July 2022

Donghua Zhao, Gaohan Zhu, Jiapeng He and Weizhong Guo

With the development of 3D printing or additive manufacturing (AM), curved layer fused deposition modeling (CLFDM) has been researched to cope with the flat layer AM inherited…

Abstract

Purpose

With the development of 3D printing or additive manufacturing (AM), curved layer fused deposition modeling (CLFDM) has been researched to cope with the flat layer AM inherited problems, such as stair-step error, anisotropy and the time-cost and material-cost problems from the supporting structures. As one type of CLFDM, cylindrical slicing has obtained some research attention. However, it can only deal with rotationally symmetrical parts with a circular slicing layer, limiting its application. This paper aims to propose a ray-based slicing method to increase the inter-layer strength of flat layer-based AM parts to deal with more general revolving parts.

Design/methodology/approach

Specifically, the detailed algorithm and implementation steps are given with several examples to enable readers to understand it better. The combination of ray-based slicing and helical path planning has been proposed to consider the nonuniform path spacing between the adjacent paths in the same curved layer. A brief introduction of the printing system is given, mainly including a 3D printer and the graphical user interface.

Findings

The preliminary experiments are successfully conducted to verify the feasibility and versatility of the proposed and improved slicing method for the revolving thin-wall parts based on a rotary 3D printer.

Originality/value

This research is early-stage work, and the authors are intended to explore the process and show the initial feasibility of ray-based slicing for revolving thin-wall parts using a rotary 3D printer. In general, this research provides a novel and feasible slicing method for multiaxis rotary 3D printers, making manufacturing revolving thin-wall and complex parts possible.

Article
Publication date: 19 July 2021

Xiaojing Feng, Bin Cui, Yaxiong Liu, Lianggang Li, Xiaojun Shi and Xiaodong Zhang

The purpose of this paper is to solve the problems of poor mechanical properties, high surface roughness and waste support materials of thin-walled parts fabricated by…

Abstract

Purpose

The purpose of this paper is to solve the problems of poor mechanical properties, high surface roughness and waste support materials of thin-walled parts fabricated by flat-layered additive manufacturing process.

Design/methodology/approach

This paper proposes a curved-layered material extrusion modeling process with a five-axis motion mechanism. This process has advantages of the platform rotating, non-support printing and three-dimensional printing path. First, the authors present a curved-layered algorithm by offsetting the bottom surface into a series of conformal surfaces and a toolpath generation algorithm based on the geodesic distance field in each conformal surface. Second, they introduce a parallel five-axis printing machine consisting of a printing head fixed on a delta-type manipulator and a rotary platform on a spherical parallel machine.

Findings

Mechanical experiments show the failure force of the five-axis printed samples is 153% higher than that of the three-axis printed samples. Forming experiments show that the surface roughness significantly decreases from 42.09 to 18.31 µm, and in addition, the material consumption reduces by 42.90%. These data indicate the curved-layered algorithm and five-axis motion mechanism in this paper could effectively improve mechanical properties and the surface roughness of thin-walled parts, and realize non-support printing. These methods also have reference value for other additive manufacturing processes.

Originality/value

Previous researchers mostly focus on printing simple shapes such as arch or “T”-like shape. In contrast, this study sets out to explore the algorithm and benefits of modeling thin-walled parts by a five-axis machine. Several validated models would allow comparability in five-axis printing.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2017

N. Adhikary and B. Gurumoorthy

This paper aims to propose an automatic and direct method to manipulate global parameters of the object for prototyping and simulation, given an STL mesh model of a thin-walled

Abstract

Purpose

This paper aims to propose an automatic and direct method to manipulate global parameters of the object for prototyping and simulation, given an STL mesh model of a thin-walled object. Proposed method is useful in rapid prototyping, where changing the global parameters such as thickness, scaling local features or draft of walls of an STL mesh is often required. Presently, user needs to iterate over the cycle of modification of the computer-aided design (CAD) model and tessellating it to change the global parameters. The proposed algorithm eliminates the need for CAD model while manipulating those global properties, as it works directly with the mesh model.

Design/methodology/approach

Proposed algorithm automatically identifies walls and its thickness, and then, it extracts mid-surface from each wall. Global parameters are then modified by using these mid-surfaces.

Findings

Mesh directly modified and the mesh obtained by tessellating modified CAD model has same global properties; proposed method can also allow multiple parameters to be modified at the same time.

Research limitations/implications

Input STL model is assumed to be error-free, where models containing errors like self-intersection will lead to incorrect mid-surfaces. Present algorithm assumes that the mid-surface represent of the input STL model is a manifold surface.

Originality/value

A novel algorithm of directly manipulating global parameters of a thin-walled object in its STL mesh model is proposed. The paper also presents a novel method of extracting mid-surface representation from a thin-wall STL mesh.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2019

Rong Li and Jun Xiong

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially…

Abstract

Purpose

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features.

Design/methodology/approach

A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part.

Findings

Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces.

Originality/value

The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2022

Alex Riensche, Jordan Severson, Reza Yavari, Nicholas L. Piercy, Kevin D. Cole and Prahalada Rao

The purpose of this paper is to develop, apply and validate a mesh-free graph theory–based approach for rapid thermal modeling of the directed energy deposition (DED) additive…

Abstract

Purpose

The purpose of this paper is to develop, apply and validate a mesh-free graph theory–based approach for rapid thermal modeling of the directed energy deposition (DED) additive manufacturing (AM) process.

Design/methodology/approach

In this study, the authors develop a novel mesh-free graph theory–based approach to predict the thermal history of the DED process. Subsequently, the authors validated the graph theory predicted temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED process was simulated using the graph theory approach, and the thermal history predictions were validated based on the data from the thermocouples.

Findings

The temperature trends predicted by the graph theory approach have mean absolute percentage error of approximately 11% and root mean square error of 23°C when compared to the experimental data. Moreover, the graph theory simulation was obtained within 4 min using desktop computing resources, which is less than the build time of 25 min. By comparison, a finite element–based model required 136 min to converge to similar level of error.

Research limitations/implications

This study uses data from fixed thermocouples when printing thin-wall DED parts. In the future, the authors will incorporate infrared thermal camera data from large parts.

Practical implications

The DED process is particularly valuable for near-net shape manufacturing, repair and remanufacturing applications. However, DED parts are often afflicted with flaws, such as cracking and distortion. In DED, flaw formation is largely governed by the intensity and spatial distribution of heat in the part during the process, often referred to as the thermal history. Accordingly, fast and accurate thermal models to predict the thermal history are necessary to understand and preclude flaw formation.

Originality/value

This paper presents a new mesh-free computational thermal modeling approach based on graph theory (network science) and applies it to DED. The approach eschews the tedious and computationally demanding meshing aspect of finite element modeling and allows rapid simulation of the thermal history in additive manufacturing. Although the graph theory has been applied to thermal modeling of laser powder bed fusion (LPBF), there are distinct phenomenological differences between DED and LPBF that necessitate substantial modifications to the graph theory approach.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000