Search results

1 – 10 of over 1000
Article
Publication date: 6 August 2019

Jieren Guan, Xiaowei Zhang, Yehua Jiang and Yongnian Yan

This study aims to obtain the mechanistic insights for the fabrication of pure copper thin wall components by selective infrared (IR) laser melting (SLM) and correlated with…

Abstract

Purpose

This study aims to obtain the mechanistic insights for the fabrication of pure copper thin wall components by selective infrared (IR) laser melting (SLM) and correlated with microstructure development, microhardness, surface morphology and phase analysis. Experimental processes for single track and selection of substrate materials have been studied using a combination of different laser powers and scanning speeds.

Design/methodology/approach

SLM of pure copper was performed on a YONGNIAN Laser YLMS-120 SLM machine using an Nd: YAG fiber laser operating at 1,060 nm in the NIR region. Single-track experiments and processing parameters are investigated through different combinations of laser power and scanning speed. The microstructure of the fabricated pure copper samples by SLM technique was analyzed by means of X-ray diffraction, scanning electron microscope equipped with energy disperse spectrometer, optical microscope (OM) and micro-hardness tester.

Findings

Steel-based substrates were found suitable for pure copper manufacturing due to sufficient heat accumulation. The width of a single track was determined by liner energy density, showing discontinuities and irregular morphologies at low laser powers and high scanning speeds. As a result of instability of the molten pool induced by Marangoni convection, cracks and cavities were observed to appear along grain boundaries in the microstructure. The top surface morphology of SLM-processed component showed a streamflow structure and irregular shapes. However, the powder particles attached to side surface, which manifest copper powders, are even more sensitive to melt pool of contour track. The crystal phase characteristics of copper components indicated increasing crystallite size of a-Cu, and the decreasing intensity of diffraction peak was attributed to the presence of defects during SLM. The maximum relative density and microhardness were 82 per cent and 61.48 HV0.2, respectively. The minimum thickness of a pure copper thin wall component was 0.2 mm.

Originality/value

This paper demonstrated the forming mechanism and explored feasibility of pure copper thin wall parts by SLM technology in the NIR region. The surface morphology, microstructure and crystal structure were preliminary studied with laser processing parameters.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2019

Yifeng Li, Xunpeng Qin, Qiang Wu, Zeqi Hu and Tan Shao

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the…

344

Abstract

Purpose

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the potential of 6-DOF industrial robots and improve the power of additive manufacturing, this paper aims to present a method to fabricate curved overhanging thin-walled parts free from turn table and support structures.

Design/methodology/approach

Five groups of straight inclined thin-walled parts with different angles were fabricated with the torch aligned with the inclination angle using RWAAM, and the angle precision was verified by recording the growth of each layer in both horizontal and vertical directions; furthermore, the experimental phenomena was explained with the force model of the molten pool and the forming characteristics was investigated. Based on the results above, an algorithm for fabricating curved overhanging thin-walled part was presented and validated.

Findings

The force model and forming characteristics during the RWAAM process were investigated. Based on the result, the influence of the torch orientation on the weld pool flow was used to control the pool flow, then a practical algorithm for fabricating curved overhanging thin-walled part was proposed and validated.

Originality/value

Regarding the fabrication of curved overhanging thin-walled parts, given the influences of the torch angles on the deposited morphology, porosity formation rate and weld pool flow, the flexibility of 6-DOF industrial robot was fully used to realize instant adjustment of the torch angle. In this paper, the deposition point and torch orientation of each layer of a robotic fabrication path was determined by the contour equation of the curve surface. By adjusting the torch angle, the pool flow was controlled and better forming quality was acquired.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 March 2023

Minting Wang, Renjie Cao, HuiChao Chang and Dong Liang

Laser-based powder bed fusion (LPBF) is a new method for forming thin-walled parts, but large cooling rates and temperature gradients can lead to large residual stresses and…

Abstract

Purpose

Laser-based powder bed fusion (LPBF) is a new method for forming thin-walled parts, but large cooling rates and temperature gradients can lead to large residual stresses and deformations in the part. This study aims to reduce the residual stress and deformation of thin-walled parts by a specific laser rescanning strategy.

Design/methodology/approach

A three-dimensional transient finite element model is established to numerically simulate the LPBF forming process of multilayer and multitrack thin-walled parts. By changing the defocus amount, the laser in situ annealing process is designed, and the optimal rescanning parameters are obtained, which are verified by experiments.

Findings

The results show that the annealing effect is related to the average surface temperature and scan time. When the laser power is 30 W and the scanning speed is 20 mm/s, the overall residual stress and deformation of the thin-walled parts are the smallest, and the in situ annealing effect is the best. When the annealing frequency is reduced to once every three layers, the total annealing time can be reduced by more than 60%.

Originality/value

The research results can help better understand the influence mechanism of laser in situ annealing process on residual stress and deformation in LPBF and provide guidance for reducing residual stress and deformation of LPBF thin-walled parts.

Article
Publication date: 1 August 2019

Changpeng Chen, Jie Yin, Haihong Zhu, Xiaoyan Zeng, Guoqing Wang, Linda Ke, Junjie Zhu and Shijie Chang

High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is…

Abstract

Purpose

High residual stress caused by the high temperature gradient brings undesired effects such as shrinkage and cracking in selective laser melting (SLM). The purpose of this study is to predict the residual stress distribution and the effect of process parameters on the residual stress of selective laser melted (SLMed) Inconel 718 thin-walled part.

Design/methodology/approach

A three-dimensional (3D) indirect sequentially coupled thermal–mechanical finite element model was developed to predict the residual stress distribution of SLMed Inconel 718 thin-walled part. The material properties dependent on temperature were taken into account in both thermal and mechanical analyses, and the thermal elastic–plastic behavior of the material was also considered.

Findings

The residual stress changes from compressive stress to tensile stress along the deposition direction, and the residual stress increases with the deposition height. The maximum stress occurs at both ends of the interface between the part and substrate, while the second largest stress occurs near the top center of the part. The residual stress increases with the laser power, with the maximum equivalent stress increasing by 21.79 per cent as the laser power increases from 250 to 450 W. The residual stress decreases with an increase in scan speed with a reduction in the maximum equivalent stress of 13.67 per cent, as the scan speed increases from 500 to 1,000 mm/s. The residual stress decreases with an increase in layer thickness, and the maximum equivalent stress reduces by 33.12 per cent as the layer thickness increases from 20 to 60µm.

Originality/value

The residual stress distribution and effect of process parameters on the residual stress of SLMed Inconel 718 thin-walled part are investigated in detail. This study provides a better understanding of the residual stress in SLM and constructive guidance for process parameters optimization.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2019

Rong Li and Jun Xiong

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially…

Abstract

Purpose

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features.

Design/methodology/approach

A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part.

Findings

Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces.

Originality/value

The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2021

José M. Zea Pérez, Jorge Corona-Castuera, Carlos Poblano-Salas, John Henao and Arturo Hernández Hernández

The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718…

Abstract

Purpose

The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF).

Design/methodology/approach

Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies.

Findings

The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed.

Originality/value

This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 August 2020

Dongqing Yang, Jun Xiong and Rong Li

This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of…

280

Abstract

Purpose

This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method.

Design/methodology/approach

An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size.

Findings

The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer.

Originality/value

The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 July 2014

Shujuan Hou, Zhidan Zhang, Xujing Yang, Hanfeng Yin and Qing Li

The purpose of this paper is to optimize a new thin-walled cellular configurations with crashworthiness criteria, so as to improve the crashworthiness of components of a vehicle…

Abstract

Purpose

The purpose of this paper is to optimize a new thin-walled cellular configurations with crashworthiness criteria, so as to improve the crashworthiness of components of a vehicle body.

Design/methodology/approach

ANSYS Parametric Design Language is used to create the parameterized models so that the design variables can be changed conveniently. Moreover, the surrogate technique, namely response surface method, is adopted for fitting objective and constraint functions. The factorial design and D-optimal criterion are employed to screen active parameters for constructing the response functions of the specific energy absorption and the peak crushing force. Finally, sequential quadratic programming-NLPQL is utilized to solve the design optimization problem of the new cellular configurations filled with multi-cell circular tubes under the axial crushing loading.

Findings

Two kinds of distribution modes of the cellular configurations are first investigated, which are in an orthogonal way and in a diamond fashion. After comparing the optimized configurations of the rectangular distribution with the annular distribution of the multi-cell fillers, it is found that the orthogonal way seems better in the aspects of crashworthiness than the diamond fashion.

Originality/value

The two new thin-walled cellular configuration are studied and optimized with the crashworthiness criteria. Study on the new cellular configurations is very valuable for improving the crashworthiness of components of a vehicle body. Meanwhile, the factorial design and the factor screening are adopted in the process of the crashworthiness optimization of the new thin-walled cellular configurations.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 July 2019

Rong Li and Jun Xiong

This paper aims to study the residual stress of deposited components which is a main issue to impede the widespread application of wire and arc additive manufacturing (WAAM). The…

Abstract

Purpose

This paper aims to study the residual stress of deposited components which is a main issue to impede the widespread application of wire and arc additive manufacturing (WAAM). The interlayer dwell time is believed to have an effect on residual stress distributions in WAAM due to variance in heat dissipation condition. A coupled thermomechanical finite element model was established to evaluate the role of dwell time in between layers on the mechanical behavior of thin-walled components in WAAM, mainly involving thermal stress evolutions and residual stress distributions of the component and substrate.

Design/methodology/approach

Four interlayer dwell times including 0, 120 and 300 s and cooling to ambient temperature were selected in finite element modeling, and corresponding experiments were conducted to verify the reliability of the model.

Findings

The results show that with the interlayer dwell time, the stress cycling curves become more uniform and the interlayer stress-releasing effect is weakened. The residual stress levels on the substrate decrease with the increasing interlayer dwell time. In the outside surface of the component, the distributions of axial and longitudinal residual stress along the deposition path are the smoothest when the interlayer dwell time is cooling to ambient temperature. In the inside surface, a longer interlayer dwell time leads to an obvious decrease in the longitudinal and axial residual stress along the deposition path.

Originality/value

The comprehensive study of how the interlayer dwell time influences stress field of components is helpful to improve the deposition defects generated by WAAM.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 August 2021

Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Alan Kin-Tak Lau and Hong-You Lin

Depending on an experimental approach to find optimal parameters for producing fully dense (relative density > 99%) Inconel 718 (IN718) components in the selective laser melting…

Abstract

Purpose

Depending on an experimental approach to find optimal parameters for producing fully dense (relative density > 99%) Inconel 718 (IN718) components in the selective laser melting (SLM) process is expensive and offers no guarantee of success. Accordingly, this study aims to propose a multi-scale simulation framework to guide the choice of processing parameters in a more pragmatic manner.

Design/methodology/approach

In the proposed approach, a powder layer, ray tracing and heat transfer simulation models are used to calculate the melt pool dimensions and evaporation volume corresponding to a small number of laser power and scanning speed conditions within the input design space. A layer-heating model is then used to determine the inter-layer idle time required to maximize the temperature convergence rate of the solidified layer beneath the power bed. The simulation results are used to train surrogate models to construct SLM process maps for 3,600 pairs of the laser power and scanning speed within the input design space given three different values of the underlying solidified layer temperature (i.e., 353 K, 673 K and 873 K). The ideal selection of laser power and scanning speed of each process map is chosen based on four quality-related criteria listed as follows: without the appearance of key-hole melting; an evaporation volume less than the volume of the d90 powder particles; ensuring the stability of single scan tracks; and avoiding a weak contact between the melt pool and substrate. Finally, the optimal laser power and scanning speed parameters for the SLM process are determined by superimposing the optimal regions of the individual process maps.

Findings

The feasibility of the proposed approach is demonstrated by fabricating IN718 test specimens using the optimal processing conditions identified by the simulation framework. It is shown that the maximum density of the fabricated parts is 99.94%, while the average density is 99.88% and the standard deviation is less than 0.05%.

Originality/value

The present study proposed a multi-scale simulation model which can efficiently predict the optimal processing conditions for producing fully dense components in the SLM process. If the geometry of the three-dimensional printed part is changed or the machine and powder material is altered, users can use the proposed method for predicting the processing conditions that can produce the high-density part.

1 – 10 of over 1000