Search results

1 – 7 of 7
Open Access
Article
Publication date: 6 March 2024

Madhura Rao, Lea Bilić, Aalt Bast and Alie de Boer

In this case study, we examine how a citrus peel valorising company based in the Netherlands was able to adopt a circular business model while navigating regulatory, managerial…

Abstract

Purpose

In this case study, we examine how a citrus peel valorising company based in the Netherlands was able to adopt a circular business model while navigating regulatory, managerial, and supply chain-related barriers.

Design/methodology/approach

In-depth, semi-structured interviews with key personnel in the company, notes from field observations, photographs of the production process, and documents from a legal judgement served as data for this single, qualitative case study. Data were coded inductively using the in vivo technique and were further developed into four themes and a case description.

Findings

Results from our study indicate that the regulatory and political contexts in the Netherlands were critical to the company’s success. Like in the case of most fruitful industrial symbioses, partnerships founded on mutual trust and economically appealing value propositions played a crucial role in ensuring commercial viability. Collaborating with larger corporations and maintaining transparent communication with stakeholders were also significant contributing factors. Lastly, employees’ outlook towards circularity combined with their willingness to learn new skills were important driving factors as well.

Originality/value

In addition to expanding the scholarship on the adoption of circular business models, this research offers novel insights to policymakers and practitioners. It provides empirical evidence regarding the importance of public awareness, adaptable legislation, and harmonised policy goals for supporting sustainable entrepreneurship in the circular economy.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 21 July 2022

Fatima Iftikhar, Suleman Anis, Umar Bin Asad, Shagufta Riaz, Muntaha Rafiq and Salman Naeem

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering…

Abstract

Purpose

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering disturbance during sleep. Different products like splints, braces and gloves are available in the market to alleviate this disease but there was still a need to improve the wearability, comfort and cost of the product. This study was about designing a comfortable and cost-effective wearable system for mild-to-moderate CTS. Transcutaneous electrical nerve stimulation (TENS) therapy has been used to reduce the pain in the wrist.

Design/methodology/approach

After simulation by using Proteus software (which allowed the researchers to draw and simulate electrical circuits using ISIS, ARES and PCB design tools virtually), the circuit with optimum frequency, i.e. 33 Hz was selected, and the circuit was developed on a printed circuit board (PCB). The developed circuit was integrated successfully into the half glove structure.

Findings

The developed product had good thermophysiological comfort and hand properties as compared to the commercially available product of the same kind. In vivo testing (It involves the testing with living subjects like animals, plants or human beings) was performed which resulted in 85% confirmed viability of the product against CTS. A glove with an integrated circuit was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issue of CTS.

Research limitations/implications

Industrial workers, individuals frequently using their hands or those diagnosed with CTS may wish to use this product as therapy. The attention could not be paid to the aesthetic or visual appeal of the developed product.

Originality/value

A very comfortable glove with integrated TENS electrodes was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issues of CTS.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 20 March 2023

Nadeem Rais, Akash Ved, Rizwan Ahmad, Kehkashan Parveen and Mohd. Shadab

Renal failure is an end-stage consequence after persistent hyperglycemia during diabetic nephropathy (DN), and the etiology of DN has been linked to oxidative stress. The purpose…

Abstract

Purpose

Renal failure is an end-stage consequence after persistent hyperglycemia during diabetic nephropathy (DN), and the etiology of DN has been linked to oxidative stress. The purpose of this research was to determine the beneficial synergistic effects of S-Allyl Cysteine (SAC) and Taurine (TAU) on oxidative damage in the kidneys of type 2 diabetic rats induced by hyperglycemia.

Design/methodology/approach

Experimental diabetes was developed by administering intraperitoneal single dose of streptozotocin (STZ; 65 mg/kg) with nicotinamide (NA; 230 mg/kg) in adult rats. Diabetic and control rats were treated with SAC (150 mg/kg), TAU (200 mg/kg) or SAC and TAU combination (75 + 100 mg/kg) for four weeks. The estimation of body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), oxidative stress markers along with kidney histopathology was done to investigate the antidiabetic potential of SAC/TAU in the NA/STZ diabetic group.

Findings

The following results were obtained for the therapeutic efficacy of SAC/TAU: decrease in blood glucose level, decreased level of thiobarbituric acid reactive substances (TBARS) and increased levels of GSH, glutathione-s-transferase (GST) and catalase (CAT). SAC/TAU significantly modulated diabetes-induced histological changes in the kidney of rats.

Originality/value

SAC/TAU combination therapy modulated the oxidative stress markers in the kidney in diabetic rat model and also prevented oxidative damage as observed through histopathological findings.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Case study
Publication date: 16 April 2024

Vinit Vijay Dani, Avadhanam Ramesh and Bikramjit Rishi

After working on the assignment questions, the learners can achieve the following learning outcomes: understand the buying behavior towards sustainable products in the context of…

Abstract

Learning outcomes

After working on the assignment questions, the learners can achieve the following learning outcomes: understand the buying behavior towards sustainable products in the context of mindful consumption and product characteristics, appraise the market segmentation and positioning strategy of a sustainable business, understand the application of 5C’s framework for a sustainable business and critically evaluate a new sustainable business’s challenges in the emerging business environment.

Case overview/synopsis

Dr Joe Fenn, founder and director of PFoods, with extensive experience in the pharma industry overseas, observed a decline in the consumption of traditional dairy foods. Alternative plant foods come as a savior to people who are lactose intolerant and offer a host of health benefits with low environmental impact. Riding on the waves of veganism and sustainable foods, he saw an opportunity in India. PFoods developed and launched two products, namely, Just Plants (plant-based milk alternative) and Plotein (plant-based protein alternative), in collaboration with scientists at the Indian Institute of Science, a premier scientific institution in India, and PMEDS (PreEmptive Meds), a US-based nutraceutical Company. PFoods launched and pilot-tested Just Plant, a dairy alternative substitute for milk in select reputed organizations in Bangalore. The upcoming challenges for Fenn would be to select the right segment, educate the market and position the product that would resonate well with the target customers.

Complexity academic level

The case study suits undergraduate and graduate courses such as marketing management, sustainable marketing and sustainable business. The case study can also be used in entrepreneurship management and entrepreneurial marketing courses to introduce the challenges of a sustainable startup. The case study highlights the marketing challenges faced by the disruptive and growing plant-based foods or alternative dairy industry in emerging markets.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 8: Marketing.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 2
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 7 of 7