Search results

1 – 10 of over 2000
Article
Publication date: 12 October 2022

Yongliang Wang, Jiansong Hu, David Kennedy, Jianhui Wang and Jiali Wu

Moderately thick circular cylindrical shells are widely used as supporting structures or storage cavities in structural engineering, rock engineering, and aerospace engineering…

Abstract

Purpose

Moderately thick circular cylindrical shells are widely used as supporting structures or storage cavities in structural engineering, rock engineering, and aerospace engineering. In practical engineering, shells often work with micro-cracks or defects. The existence of micro-crack damage may result in the disturbance of dynamic behaviours and even induce accidental dynamic disasters. The free vibration frequency and mode are important parameters for the dynamic performance and damage identification analysis. In particular, stiffness weakening of the local damage region leads to significant changes in the vibration mode, which makes it difficult for the mesh generated in the conventional finite element method to capture a high-precision solution of the local oscillation.

Design/methodology/approach

In response to the above problems, this study developed an adaptive finite element method and a crack damage characterisation method for moderately thick circular cylindrical shells. By introducing the inverse power iteration method, error estimation, and mesh subdivision refinement technique for the analysis of finite element eigenvalue problems, an adaptive computation scheme was constructed for the free vibration problem of moderately thick circular cylindrical shells with circumferential crack damage.

Findings

Based on typical numerical examples, the established adaptive finite element solution for the free vibration of moderately thick circular cylindrical shells demonstrated its suitability for solving the high-precision free vibration frequency and mode of cylindrical shell structures. The any order frequency and mode shape of cracked cylindrical shells under the conditions of different ring wave numbers, crack locations, crack depths, and multiple cracks were successfully solved. The influences of the location, depth, and number of cracks on the disturbance of dynamic behaviours were analysed.

Originality/value

This study can be used as a reference for the adaptive finite element solution of free vibration of moderately thick circular cylindrical shells with cracks and lays the foundation for further development of a high-performance computation method suitable for the dynamic disturbance and damage identification analysis of general cracked structures.

Article
Publication date: 24 January 2023

Yongliang Wang

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary…

Abstract

Purpose

This study aims to provide a reliable and effective algorithm that is suitable for addressing the problems of continuous orders of frequencies and modes under different boundary conditions, circumferential wave numbers and thickness-to-length ratios of moderately thick circular cylindrical shells. The theory of free vibration of rotating cylindrical shells is of utmost importance in fields such as structural engineering, rock engineering and aerospace engineering. The finite element method is commonly used to study the theory of free vibration of rotating cylindrical shells. The proposed adaptive finite element method can achieve a considerably more reliable high-precision solution than the conventional finite element method.

Design/methodology/approach

On a given finite element mesh, the solutions of the frequency mode of the moderately thick circular cylindrical shell were obtained using the conventional finite element method. Subsequently, the superconvergent patch recovery displacement method and high-order shape function interpolation techniques were introduced to obtain the superconvergent solution of the mode (displacement), while the superconvergent solution of the frequency was obtained using the Rayleigh quotient computation. Finally, the superconvergent solution of the mode was used to estimate the errors of the finite element solutions in the energy norm, and the mesh was subdivided to generate a new mesh in accordance with the errors.

Findings

In this study, a high-precision and reliable superconvergent patch recovery solution for the vibration modes of variable geometrical rotating cylindrical shells was developed. Compared with conventional finite element method, under the challenging varying geometrical circumferential wave numbers, and thickness–length ratios, the optimised finite element meshes and high-precision solutions satisfying the preset error limits were obtained successfully to solve the frequency and mode of continuous orders of rotating cylindrical shells with multiple boundary conditions such as simple and fixed supports, demonstrating good solution efficiency. The existing problem on the difficulty of adapting a set of meshes to the changes in vibration modes of different orders is finally overcome by applying the adaptive optimisation.

Originality/value

The approach developed in this study can accurately obtain the superconvergent patch recovery solution of the vibration mode of rotating cylindrical shells. It can potentially be extended to fine numerical models and high-precision computations of vibration modes (displacement field) and solid stress (displacement derivative field) for general structural special value problems, which can be extensively applied in the field of engineering computations in the future. Furthermore, the proposed method has the potential for adaptive analyses of shell structures and three-dimensional structures with crack damage. Compared with conventional finite element methods, significant advantages can be achieved by solving the eigenvalues of structures with high precision and stability.

Article
Publication date: 3 July 2017

Qingshan Wang, Dongyan Shi, Qian Liang and Fuzhen Pang

The purpose of this work is to apply the Fourier–Ritz method to study the vibration behavior of the moderately thick functionally graded (FG) parabolic and circular panels and…

187

Abstract

Purpose

The purpose of this work is to apply the Fourier–Ritz method to study the vibration behavior of the moderately thick functionally graded (FG) parabolic and circular panels and shells of revolution with general boundary conditions.

Design/methodology/approach

The modified Fourier series is chosen as the basis function of the admissible functions of the structure to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges, and the vibration behavior is solved by means of the Ritz method. The complete shells of revolution can be achieved by using the coupling spring technique to imitate the kinematic compatibility and physical compatibility conditions of FG parabolic and circular panels at the common meridian of θ = 0 and 2π. The convergence and accuracy of the present method are verified by other contributors.

Findings

Some new results of FG panels and shells with elastic restraints, as well as different geometric and material parameters, are presented and the effects of the elastic restraint parameters, power-law exponent, circumference angle and power-law distributions on the free vibration characteristic of the panels are also presented, which can be served as benchmark data for the designers and engineers to avoid the unpleasant, inefficient and structurally damaging resonant.

Originality/value

The paper could provide the reference for the research about the moderately thick FG parabolic and circular panels and shells of revolution with general boundary conditions. In addition, the change of the boundary conditions can be easily achieved by just varying the stiffness of the boundary restraining springs along all the edges of panels without making any changes in the solution procedure.

Article
Publication date: 1 May 2000

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…

3543

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 September 2023

Jun-Hui Chai, Jun-Ping Zhong, Bo Xu, Zi-Jian Zhang, Zhengxiang Shen, Xiao-Long Zhang and Jian-Min Shen

The high-pressure accumulator has been widely used in the hydraulic system. Failure pressure prediction is crucial for the safe design and integrity assessment of the…

Abstract

Purpose

The high-pressure accumulator has been widely used in the hydraulic system. Failure pressure prediction is crucial for the safe design and integrity assessment of the accumulators. The purpose of this study is to accurately predict the burst pressure and location for the accumulator shells due to internal pressure.

Design/methodology/approach

This study concentrates the non-linear finite element simulation procedure, which allows determination of the burst pressure and crack location using extensive plastic straining criterion. Meanwhile, the full-scale hydraulic burst test and the analytical solution are conducted for comparative analysis.

Findings

A good agreement between predicted and measured the burst pressure that was obtained, and the predicted failure point coincided very well with the fracture location of the actual shell very well. Meanwhile, the burst pressure of the shells increases with wall thickness, independent of the length. It can be said that the non-linear finite element method can be employed to predict the failure behavior of a cylindrical shell with sufficient accuracy.

Originality/value

This paper can provide a designer with additional insight into how the pressurized hollow cylinder might fail, and the failure pressure has been predicted accurately with a minimum error below 1%, comparing the numerical results with experimental data.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 1988

B. Suárez, J. Miquel Canet and E. Oñate

A unified approach for the vibration analysis of curved or straight prismatic plates and bridges and axisymmetric shells using a finite strip method based in Reissner—Mindlin shell

Abstract

A unified approach for the vibration analysis of curved or straight prismatic plates and bridges and axisymmetric shells using a finite strip method based in Reissner—Mindlin shell theory is presented. Details of obtaining all relevant strip matrices and vectors are given. It is also shown how the use of the simple linear two node strip with reduced integration leads to direct explicit forms of all relevant matrices. Examples of application which show the accuracy of the linear strip for free vibration analysis of structures are presented.

Details

Engineering Computations, vol. 5 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1996

Ayech Benjeddou and Mohamed Ali Hamdi

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects…

Abstract

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects in isotropic or orthotropic elastic facings, and membrane, bending and transverse shearing effects in an isotropic or othotropic elastic core. Both geometry and local displacements are interpolated by a set of B‐spline functions. The main aspects added by the sandwich structure of the element are the transverse shearing and membrane‐bending coupling effects in the core. These are well represented by a set of new variables which are the mean end relative in‐plane displacements of the facing middle surfaces. Together with the transverse displacement, these variables constitute the degrees of freedom (dofs) of this new B‐spline sandwich element. The finite elements are grouped into super‐elements with C1 continuity to obtain the whole finite element model. For each super‐element a total of five dofs per node is then obtained except for its end nodes where the derivatives of these dofs with respect to the meridional co‐ordinate are added. This choice reduces to a minimum the total number of dofs in comparison to existing sandwich elements. Evaluates the efficiency and accuracy of the proposed element through several benchmark examples. Compares the results with the analytical and numerical solutions found in the literature. A very satisfactory behaviour of the element was observed in all test cases.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1957

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’…

Abstract

The breakdown of laminar flow in the clearance space of a journal is considered, and the point of transition is considered in relation to experiments carried out with ‘bearings’ of large clearance. Experiments involving flow visualization with very large clearance ratios of 0.05 to 0.3 show that the laminar regime gives way to cellular or ring vertices at the critical Reynolds number predicted by G. I. Taylor for concentric cylinders even in the presence of an axial flow and at a rather higher Reynolds number in the case of eccentric cylinders. The effect of the transition on the axial flow between the cylinders is small. The critical speed for transition as deduced by Taylor, is little affected by moderate axial flows and is increased by eccentricity. The effect of critical condition on the axial‐flow characteristics of the bearing system appears to be negligible, again for moderate axial flows. Assuming that the results can be extrapolated to clearances applicable to bearing operation, the main conclusion of this paper is that the breakdown of laminar flow, which is a practical possibility in very high‐speed bearings, is delayed by eccentric operation.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 August 2002

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from…

2511

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The bibliography at the end of the paper contains more than 1330 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1999–2002.

Details

Engineering Computations, vol. 19 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 March 2017

Li Jun Ji, Ya Shuai Jiang, Ge Liang, Zhu Qing Liu, Jian Zhu, Kai Huang and Ai Ping Zhu

The purpose of this paper was to synthesise a thermally expandable microsphere (TEMS) with fast thermal response property and small expansion temperature range, and investigate…

Abstract

Purpose

The purpose of this paper was to synthesise a thermally expandable microsphere (TEMS) with fast thermal response property and small expansion temperature range, and investigate the factors affecting the expansion properties of the microspheres.

Design/methodology/approach

A new kind of TEMS with fast thermal response property was synthesised by suspension polymerisation method, using acrylonitrile, ethyl methacrylate and methacrylic acid as the main monomers; Mg(OH)2 as the main dispersing agent; and isooctane or n-hexane or n-pentane as the blowing agent.

Findings

The TEMS possessed the best expansion capacity when encapsulated isooctane and n-hexane were about 18.5 Wt.%. The expansion process of the TEMS could be finished by raising the temperature to 18°C from the expansion onset, much less than the reported 30-50°C. The morphology of the TEMS turned from sphere to irregular concave shape following the content increase of the blowing agent.

Originality/value

A new kind of TEMS composed of acrylonitrile/ethyl methacrylate/methacrylic acid as the polymer shell was synthesised. These TEMS showed the fastest thermal response speed reported.

Details

Pigment & Resin Technology, vol. 46 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 2000