Search results

1 – 10 of 164
Article
Publication date: 30 May 2023

Qiang Wang, Hongliang Zhang, Da Quan Zhang, Hongai Zheng and Lixin Gao

The purpose of this paper is to study the effect of vapor assembly sequence and assembly temperature on the corrosion protection of the complex silane films Al alloy. The…

Abstract

Purpose

The purpose of this paper is to study the effect of vapor assembly sequence and assembly temperature on the corrosion protection of the complex silane films Al alloy. The performance and application range of silane films are enhanced.

Design/methodology/approach

The complex silane films were successfully prepared on the surface of aluminum alloy using via vapor phase assembly of 1,2,3-benzotriazole (BTA) and dodecyltrimethoxysilanes (DTMS). The protection of the assembly films against corrosion of Al alloy is investigated by the electrochemical measurements and the alkaline solution accelerated corrosion test. Thickness and hydrophobicity of the complex films are studied using ellipsometric spectroscopy and contact angle tests.

Findings

It shows that the anti-corrosion ability of the complex films is overall superior to that of the single-component assembled films. DTMS-BTA films have larger thickness and best anti-corrosion ability. The alkyl chains in DTMS have better compatibility with BTA molecules. The rigid BTA molecule can permeate into the long alkyl chain of DTMS as fillers and improve the barrier properties of the complex films.

Originality/value

In this paper, a green and efficient method of vapor phase assembly is proposed to rust prevention during manufacture of Al alloy workpiece.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 May 2023

Bassam Abdallah, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical…

41

Abstract

Purpose

Niobium Nitride (NbN) was interesting material for its applications in the medicinal tools or tools field (corresponding to saline serum media) as well as in mechanical properties. The aim of this work was depositing NbN thin films on two types of substrates (stainless steel (SS304) and silicon (100)) using plasma technique at varied powers (100–150 W).

Design/methodology/approach

DC magnetron sputtering technique at different powers were used to synthesis NbN films. Film structure was studied using X-ray diffraction (XRD) pattern. Rutherford elastic backscattering and energy dispersive X-ray were used to examine the deposited film composition. The films morphology was studied via atomic force microscopy and scanning electron microscopy images. Corrosion resistance of the three NbN/SS304 films was studied in 0.9% NaCl environment (physiological standard saline).

Findings

All properties could be controlled by the modification of DC power, where the crystallinity of samples was changed and consequently the corrosion and microhardness were modified, which correlated with the power. NbN film deposited at higher power (150 W) has shown better corrosion resistance (0.9% NaCl), which had smaller grain size (smoother) and was thicker.

Originality/value

The NbN films have a preferred orientation (111) matching to cubic structure phase. Corrosion resistance was enhanced for the NbN films compared to SS304 substrates (noncoating). Therefore, NbN films deposited on SS304 substrate could be applied as medicinal tools as well as in mechanical fields.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 August 2023

Clément Génin, Marc Jeannin, Anne-Marie Grolleau and Philippe Refait

The purpose of this study is to investigate cathodic protection (CP) efficiency in the tidal zone and its associated processes.

Abstract

Purpose

The purpose of this study is to investigate cathodic protection (CP) efficiency in the tidal zone and its associated processes.

Design/methodology/approach

Specific features of CP in the tidal zone, that is, persistence of a thin seawater film and insufficient cathodic potential due to ohmic drop, were addressed. In this preliminary study, carbon steel electrodes were polarized at two cathodic potentials (correct or insufficient protection) while immersed in 1 mm or 5 mm thick natural seawater layers. After CP interruption, the protective ability of the layers covering the steel electrodes was studied using various electrochemical methods, including electrochemical impedance spectroscopy. The layers were characterized by XRD.

Findings

The protective ability of calcareous deposits was increased in thin seawater films. Insufficient CP could promote protective aragonite/corrosion products layer.

Originality/value

The combined effects of thin seawater film and applied potential were never addressed, and the conclusions drawn from this preliminary study give new insight on the efficiency of CP in the tidal zone.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 February 2024

Bassem Assfour, Bassam Abdallah, Hour Krajian, Mahmoud Kakhia, Karam Masloub and Walaa Zetoune

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the…

Abstract

Purpose

The purpose of this study is to investigate the structural, surface roughness and corrosion properties of the zirconium oxide thin films deposited onto SS304 substrates using the direct current (DC) magnetron sputtering technique.

Design/methodology/approach

DC sputtering at different powers – 80, 100 and 120 W – was used to deposit ZrO2 thin films onto different substrates (Si/SS304) without annealing of the substrate. Atomic force microscope (AFM), energy-dispersive X-ray spectroscopy (EDS), Tafel extrapolation and contact angle techniques were applied to investigate the surface roughness, chemical compositions, corrosion behavior and hydrophobicity of these films.

Findings

Results showed that the thickness of the deposited film increased with power increase, while the corrosion current decreased with power increase. AFM images indicated that the surface roughness decreased with an increase in DC power. EDS analysis showed that the thin film has a stoichiometric ZrO2 (Zr:O 1:2) composition with basic uniformity. Water contact angle measurements indicated that the hydrophobicity of the synthesized films decreased with an increase in surface roughness.

Originality/value

DC magnetron sputtering technique is infrequently used to deposition thin films. The obtained thin films showed good hydrophobic and anticorrosion properties. Finally, results are compared with other deposition techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2023

Xinran Zhao, Yingying Pang, Gang Wang, Chenhui Xia, Yuan Yuan and Chengqian Wang

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Abstract

Purpose

This paper aims to realize the vertical interconnection in 3D radio frequency (RF) circuit by coaxial transitions with broad working bandwidth and small signal loss.

Design/methodology/approach

An advanced packaging method, 12-inch wafer-level through-mold-via (TMV) additive manufacturing, is used to fabricate a 3D resin-based coaxial transition with a continuous ground wall (named resin-coaxial transition). Designation and simulation are implemented to ensure the application universality and fabrication feasibility. The outer radius R of coaxial transition is optimized by designing and fabricating three samples.

Findings

The fabricated coaxial transition possesses an inner radius of 40 µm and a length of 200 µm. The optimized sample with an outer radius R of 155 µm exhibits S11 < –10 dB and S21 > –1.3 dB at 10–110 GHz and the smallest insertion loss (S21 = 0.83 dB at 77 GHz) among the samples. Moreover, the S21 of the samples increases at 58.4–90.1 GHz, indicating a broad and suitable working bandwidth.

Originality/value

The wafer-level TMV additive manufacturing method is applied to fabricate coaxial transitions for the first time. The fabricated resin-coaxial transitions show good performance up to the W-band. It may provide new strategies for novel designing and fabricating methods of RF transitions.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 November 2023

Shoufan Cao, Zhang Xu, Yi Liang and Stefano Mischler

The aim of this study is to experimentally analyze the friction and wear responses of different steels to different surface films generated in oil-lubricated tribological contacts.

Abstract

Purpose

The aim of this study is to experimentally analyze the friction and wear responses of different steels to different surface films generated in oil-lubricated tribological contacts.

Design/methodology/approach

Tribological experiments were conducted using a 100Cr6 bearing ball sliding against a V155 carbon steel disk and 316L stainless steel disk, respectively. Lubricants with additives known to form zinc dialkyl-dithiophosphate (ZDDP) or Ca tribofilms were used.

Findings

Both of the ZDDP and Ca tribofilms helped stabilize the friction coefficient of the carbon steel and stainless steel. The ZDDP tribofilm could effectively protect the carbon steel from wear, in contrast to the stainless steel, whereas the wear of both carbon steel and stainless steel could be significantly reduced by the Ca tribofilm. In the case of neither ZDDP nor Ca tribofilms formation, the 100Cr6 ball was worn by the V155 disk and generated a special surface topography. A polishing wear mechanism was proposed to explain the wear of the 100Cr6 ball.

Originality/value

This study clearly shows the different friction and wear responses of steels to the different surface films and the response is dependent on the tested steel.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 April 2023

Mozhgan Hosseinnezhad and Zahra Ranjbar

The purpose of this paper is to introduce flexible dye-sensitized solar cells (FDSSCs).

Abstract

Purpose

The purpose of this paper is to introduce flexible dye-sensitized solar cells (FDSSCs).

Design/methodology/approach

In the third generation solar cells, glass was used as a substrate, which due to its high weight and fragility, was not possible to produce continuously. However, in flexible solar cells, flexible substrates are used as new technology. The most important thing may choose a suitable substrate to produce a photovoltaic (PV) device with optimal efficiency.

Findings

Conductive plastics or metallic foils are the two main candidates for glass replacement, each with its advantages and disadvantages. As some high-temperature methods are used to prepare solar cells, metal substrates can be used to prepare PV devices without any problems. In contrast to the advantage of high thermal resistance in metals, metal substrates are dark and do not transmit enough light. In other words, metal substrates have a high loss of photon energy. Like all technologies, PV devices with polymer substrates have technical disadvantages.

Practical implications

In this study, the development of FDSSCs offers improved photovoltaic properties.

Social implications

The most important challenge is the poor thermal stability of polymers compared to glass and metal, which requires special methods to prepare polymer solar cells. The second important point is choosing the suitable components and materials for this purpose.

Originality/value

Dependence of efficiency and performance of the device on the angle of sunlight, high-cost preparation devices components, limitations of functional materials such as organic-mineral sensitizers, lack of close connection between practical achievements and theoretical results and complicated fabrication process and high weight.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2024

Mohamed Abd Alsamieh

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of…

Abstract

Purpose

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of frequency, stroke length and load on film thickness and pressure variation during one operating cycle are discussed. The general tribological behavior of elastohydrodynamic lubrication during reciprocating motion is explained.

Design/methodology/approach

The system of equations of Reynolds, film thickness considering surface deformation and load balance equations are solved using the Newton-Raphson technique with the Gauss-Seidel iteration method. Numerical solutions were performed with a sinusoidal contact surface velocity to simulate reciprocating elastohydrodynamics. The methodology is validated using historical experimental measurements/observations and numerical predictions from other researchers.

Findings

The numerical results showed that the change in oil film during a stroke is controlled by both wedge and squeeze effects. When the surface velocity is zero at the stroke end, the squeeze effect is most noticeable. As the frequency increases, the general trend of central and minimum film thickness increases. With the same entraining speed but different stroke lengths, the properties of the oil film differ from one another, with an increase in stroke length leading to a reduction in film thickness. Finally, the numerical results showed that the overall film thickness decreases with increasing load.

Originality/value

General tribological behaviors of elastohydrodynamic lubricating point contact, represented by pressure and film thickness variations over time and profiles, are analyzed under reciprocating motion during one working cycle to show the effects of frequency, stroke length and applied load.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 164