Search results

1 – 2 of 2
Article
Publication date: 1 August 2000

Jicun Lu, Jianhua Wu, Yih Pin Liew, Thiam Beng Lim and Xiangfu Zong

The impact of underfill properties on the thermomechanical reliability of flip chip on board (FCOB) assembly is addressed in this paper. FCOB assemblies using three underfill…

Abstract

The impact of underfill properties on the thermomechanical reliability of flip chip on board (FCOB) assembly is addressed in this paper. FCOB assemblies using three underfill encapsulants were subjected to a thermal cycling test. The performance of the underfill encapsulants was assessed by a statistical analysis of the failure distribution of the FCOB assemblies. The failure modes in the thermal cycling test were found to be solder joint cracks, delamination at underfill/chip passivation interface, and underfill internal cracks. An attempt was made to correlate these failures with underfill properties such as the coefficient of thermal expansion (CTE), modulus, glass transition temperature (Tg), and adhesive strength to the chip. Additionally, nonlinear finite element analysis (FEA) was conducted to verify the experimental results.

Details

Soldering & Surface Mount Technology, vol. 12 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 August 2021

Elwin Heng and Mohd Zulkifly Abdullah

This paper focuses on the fluid-structure interaction (FSI) analysis of moisture induced stress for the flip chip ball grid array (FCBGA) package with hydrophobic and hydrophilic…

Abstract

Purpose

This paper focuses on the fluid-structure interaction (FSI) analysis of moisture induced stress for the flip chip ball grid array (FCBGA) package with hydrophobic and hydrophilic materials during the reflow soldering process. The purpose of this paper is to analyze the influence of moisture concentration and FCBGA with hydrophobic material on induced pressure and stress in the package at varies times.

Design/methodology/approach

The present study analyzed the warpage deformation during the reflow process via visual inspection machine (complied to Joint Electron Device Engineering Council standard) and FSI simulation by using ANSYS/FLUENT package. The direct concentration approach is used to model moisture diffusion and ANSYS is used to predict the Von-Misses stress. Models of Test Vehicle 1 (similar to Xie et al., 2009b) and Test Vehicle 2 (FCBGA package) with the combination of hydrophobic and hydrophilic materials are performed. The simulation for different moisture concentrations with reflows process time has been conducted.

Findings

The results from the mechanical reliability study indicate that the FSI analysis is found to be in good agreement with the published study and acceptable agreement with the experimental result. The maximum Von-Misses stress induced by the moisture significantly increased on FCBGA with hydrophobic material compared to FCBGA with a hydrophilic material. The presence of hydrophobic material that hinders the moisture desorption process. The analysis also illustrated the moisture could very possibly reside in electronic packaging and developed beyond saturated vapor into superheated vapor or compressed liquid, which exposed electronic packaging to higher stresses.

Practical implications

The findings provide valuable guidelines and references to engineers and packaging designers during the reflow soldering process in the microelectronics industry.

Originality/value

Studies on the influence of moisture concentration and hydrophobic material are still limited and studies on FCBGA package warpage under reflow process involving the effect of hydrophobic and hydrophilic materials are rarely reported. Thus, this study is important to effectively bridge the research gap and yield appropriate guidelines in the microelectronics industry.

Details

Soldering & Surface Mount Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Access

Year

All dates (2)

Content type

1 – 2 of 2