Search results

1 – 10 of 30
Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 December 2023

Aniket Halder, Arabdha Bhattacharya, Nirmalendu Biswas, Nirmal K. Manna and Dipak Kumar Mandal

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic…

Abstract

Purpose

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic irreversibility, within a novel butterfly-shaped cavity. Gaining a thorough understanding of these phenomena will help to facilitate the design and optimization of thermal systems with complex geometries under magnetic fields in diverse applications.

Design/methodology/approach

To achieve the objective, the finite element method is used to solve the governing equations of the problem. The effects of various controlling parameters such as butterfly-shaped triangle vertex angle (T), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ ) on the hydrothermal performance are analyzed meticulously. By investigating the effects of these parameters, the authors contribute to the existing knowledge by shedding light on their influence on heat and fluid transport within butterfly-shaped cavities.

Findings

The major findings of this study reveal that the geometrical shape significantly alters fluid motion, heat transfer and irreversibility production. Maximum heat transfer, as well as entropy generation, occurs when the Rayleigh number reaches its maximum, the Hartmann number is minimized and the angle of the magnetic field is set to 30° or 150°, while the butterfly wings angle or vertex angle is kept at a maximum of 120°. The intensity of the magnetic field significantly controls the heat flow dynamics, with higher magnetic field strength causing a reduction in the flow strength as well as heat transfer. This configuration optimizes the heat transfer characteristics in the system.

Research limitations/implications

Further research can be expanded on this study by examining thermal performance under different curvature effects, orientations, boundary conditions and additional factors. This can be accomplished through numerical simulations or experimental investigations under various multiphysical scenarios.

Practical implications

The geometric configurations explored in this research have practical applications in various engineering fields, including heat exchangers, crystallization processes, microelectronic devices, energy storage systems, mixing processes, food processing, air-conditioning, filtration and more.

Originality/value

This study brings value by exploring a novel geometric configuration comprising the nanofluidic flow, and MHD effect, providing insights and potential innovations in the field of thermal fluid dynamics. The findings contribute a lot toward maximizing thermal performance in diverse fields of applications. The comparison of different hydrothermal behavior and thermodynamic entropy production under the varying geometric configuration adds novelty to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 February 2024

Ratna Candra Sari, Mahfud Sholihin, Fitra Roman Cahaya, Nurhening Yuniarti, Sariyatul Ilyana and Erna Fitriana

The purpose of this paper is to investigate the process by which the level of immersion in virtual reality-based behavioral simulation (VR-BS) impacts on the non-cognitive and…

Abstract

Purpose

The purpose of this paper is to investigate the process by which the level of immersion in virtual reality-based behavioral simulation (VR-BS) impacts on the non-cognitive and cognitive outcomes. The cognitive outcome is measured using the increase in the level of Sharia financial literacy, while the noncognitive outcome is measured using the behavioral intention to use VR-BS.

Design/methodology/approach

The method consists of two parts: First, the development of VR-BS, in the context of sharia financial literacy, using the waterfall model. Second, testing the effectiveness of VR-BS using the theory of interactive media effects framework. The participants were 142 students from three secondary schools (two Islamic religious schools and one public school) in Yogyakarta and Central Java, Indonesia. Partial least squares structural equation modeling was used for testing the hypotheses.

Findings

VR-BS creates a perceived coolness and vividness, which in turn has an impact on increasing the participants’ engagement. Also, the use of VR has an impact on natural mapping, which increases a user’s engagement through its perceived ease of use. As predicted, the user’s engagement affects VR’s behavior, mediated by the user’s attitude toward VR media. VR’s interactivity, however, does not impact on the cognitive aspect.

Research limitations/implications

The participants were not randomly selected, as the data were collected during the COVID-19 pandemic. As a result, the majority of the participants had never tried VR before this study. The participants, however, were digital natives.

Practical implications

It is implied from the findings that Islamic financial business actors and the relevant government agencies (e.g. the Indonesian Financial Services Authority [OJK], the Ministry of Education, Culture, Research and Technology and the Ministry of Religious Affairs) should collaborate to best prepare the future generation of ummah by using VR-BS in their joint promotion and education programs. The results of the current study reveal that the use of VR-BS may attract people to engage in Islamic financial activities. By engaging in such activities, or at least engaging in real-life simulations/classes/workshops, people may gradually acquire more knowledge about Islamic finance.

Originality/value

As predicted, the user’s engagement has an impact on behavior toward VR-BS, which is mediated by attitude toward VR-BS.

Details

Journal of Islamic Accounting and Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-0817

Keywords

Article
Publication date: 12 January 2024

Gowtham G. and Jagan Raj R.

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their…

Abstract

Purpose

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their compact size and ease of assembly. Because they are quite unstable, autonomous control systems would be used to overcome this problem. Modelling autonomous control is predominant as the research scope faces challenges because of its highly non-linear, multivariable system with 6 degree of freedom.

Design/methodology/approach

Quadcopters with antonym systems can operate in an unknown environment by overcoming unexpected disturbances. The first objective when designing such a system is to design an accurate mathematical model to describe the dynamics of the system. Newton’s law of motion was used to build the mathematical model of the system.

Findings

Establishment of the mathematical model and the physics behind a four propeller drone for the frame TAROT 650 carbon was done. Simulink model was developed based on the mathematical model for simulating the complete dynamics of the drone as well as location and gusts were included to check the stability.

Originality/value

The control response of the system was simulated numerically results are discussed. The trajectory path was found. The phases with their own parameters can be used to implement the mathematical model for another type of quadcopter model and achieve quick development.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 April 2024

Prerna Panda and Pankaj Singh

This study aims to examine the association of employee resilience and agility with innovative performance and subjective well-being. Moreover, it tests job crafting as the…

Abstract

Purpose

This study aims to examine the association of employee resilience and agility with innovative performance and subjective well-being. Moreover, it tests job crafting as the underlying mechanism through which resilient and agile employees perform innovatively and experience higher subjective well-being.

Design/methodology/approach

The study used a survey-based research design and structural equation modeling technique to examine the proposed hypotheses. Data was collected from a sample of 380 employees working in the Indian information technology sector using survey questionnaires.

Findings

The results show that highly resilient and agile employees participate in job crafting that positively influences their innovative performance and subjective well-being. Job crafting fully mediates the association of resilience with work and well-being outcomes and partially mediates agility and outcomes.

Practical implications

There is a value in promoting the development of employee resilience and agility to foster ways in which employees can craft their jobs and, thus, maximize their innovative performance and subjective well-being.

Originality/value

This study makes an important contribution by underscoring the importance of personal resources (resilience and agility) as drivers of job crafting for higher innovative performance and subjective well-being.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Book part
Publication date: 5 April 2024

Ziwen Gao, Steven F. Lehrer, Tian Xie and Xinyu Zhang

Motivated by empirical features that characterize cryptocurrency volatility data, the authors develop a forecasting strategy that can account for both model uncertainty and…

Abstract

Motivated by empirical features that characterize cryptocurrency volatility data, the authors develop a forecasting strategy that can account for both model uncertainty and heteroskedasticity of unknown form. The theoretical investigation establishes the asymptotic optimality of the proposed heteroskedastic model averaging heterogeneous autoregressive (H-MAHAR) estimator under mild conditions. The authors additionally examine the convergence rate of the estimated weights of the proposed H-MAHAR estimator. This analysis sheds new light on the asymptotic properties of the least squares model averaging estimator under alternative complicated data generating processes (DGPs). To examine the performance of the H-MAHAR estimator, the authors conduct an out-of-sample forecasting application involving 22 different cryptocurrency assets. The results emphasize the importance of accounting for both model uncertainty and heteroskedasticity in practice.

Article
Publication date: 1 February 2024

David Hedberg, Martin Lundgren and Marcus Nohlberg

This study aims to explore auto mechanics awareness of repairs and maintenance related to the car’s cybersecurity and provide insights into challenges based on current practice.

Abstract

Purpose

This study aims to explore auto mechanics awareness of repairs and maintenance related to the car’s cybersecurity and provide insights into challenges based on current practice.

Design/methodology/approach

This study is based on an empirical study consisting of semistructured interviews with representatives from both branded and independent auto workshops. The data was analyzed using thematic analysis. A version of the capability maturity model was introduced to the respondents as a self-evaluation of their cybersecurity awareness.

Findings

Cybersecurity was not found to be part of the current auto workshop work culture, and that there is a gap between independent workshops and branded workshops. Specifically, in how they function, approach problems and the tools and support available to them to resolve (particularly regarding previously unknown) issues.

Research limitations/implications

Only auto workshop managers in Sweden were interviewed for this study. This role was picked because it is the most likely to have come in contact with cybersecurity-related issues. They may also have discussed the topic with mechanics, manufacturers or other auto workshops – thus providing a broader view of potential issues or challenges.

Practical implications

The challenges identified in this study offers actionable advice to car manufacturers, branded workshops and independent workshops. The goal is to further cooperation, improve knowledge sharing and avoid unnecessary safety or security issues.

Originality/value

As cars become smarter, they also become potential targets for cyberattacks, which in turn poses potential threats to human safety. However, research on auto workshops, which has previously ensured that cars are road safe, has received little research attention with regards to the role cybersecurity can play in repairs and maintenance. Insights from auto workshops can therefore shed light upon the unique challenges and issues tied to the cybersecurity of cars, and how they are kept up-to-date and road safe in the digital era.

Details

Information & Computer Security, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-4961

Keywords

Article
Publication date: 15 September 2022

Saima Habib, Farzana Kishwar and Zulfiqar Ali Raza

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may…

Abstract

Purpose

The purpose of this study is to apply silver nanoparticles on the cellulosic fabric via a green cross-linking approach to obtain antibacterial textiles. The cellulosic fabrics may provide an ideal enclave for microbial growth due to their biodegradable nature and retention of certain nutrients and moisture usually required for microbial colonization. The application of antibacterial finish on the textile surfaces is usually done via synthetic cross-linkers, which, however, may cause toxic effects and halt the biodegradation process.

Design/methodology/approach

Herein, we incorporated citrate moieties on the cellulosic fabric as eco-friendly crosslinkers for the durable and effective application of nanosilver finish. The nanosilver finish was then applied on the citrate-treated cellulosic fabric under the pad-dry-cure method and characterized the specimens for physicochemical, textile and antibacterial properties.

Findings

The results expressed that the as-prepared silver particles possessed spherical morphology with their average size in the nano range and zeta potential being −40 ± 5 mV. The results of advanced analytical characterization demonstrated the successful application of nanosilver on the cellulosic surface with appropriate dispersibility.

Practical implications

The nanosilver-treated fabric exhibited appropriate textile and comfort and durable broad-spectrum antibacterial activity.

Originality/value

The treated cellulosic fabric expressed that the cross-linking, crystalline behavior, surface chemistry, roughness and amphiphilicity could affect some of its comfort and textile properties yet be in the acceptable range for potential applications in medical textiles and environmental sectors.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 February 2024

Giulia Monteverde and Andrea Runfola

This paper aims to integrate the consumption perspective within the Industrial Marketing and Purchasing (IMP) debate. The study delves into how consumer communities can be…

Abstract

Purpose

This paper aims to integrate the consumption perspective within the Industrial Marketing and Purchasing (IMP) debate. The study delves into how consumer communities can be conceived like other network business actors. The perspective of sustainable new ventures (SNVs) in the fashion industry is adopted, considering their specific connection with consumer communities.

Design/methodology/approach

Adopting a multiple case study methodology, this paper uses a qualitative approach. Data collection mainly relies on interviews conducted with 10 SNVs in the fashion industry; this sector is a fertile ground for studying sustainability and consumer communities. For data analysis, the abductive approach of systematic combining is applied.

Findings

The paper identifies four distinct types of consumer communities and four roles that they can assume as business actors in the business network. Owing to their engagement in these specific roles, consumer communities become part of the SNVs’ network, akin to other business-to-business players.

Originality/value

This study represents one of the initial endeavors to introduce consumption into the IMP theoretical framework. In this paper’s conceptualization, consumer communities are groups of consumers and collective actors in the business network. Additionally, this study advances the research on sustainability as a network concept by including consumer communities’ roles in business networks.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 8 March 2022

Md Mehedi Hasan Rubel, Syed Rashedul Islam, Abeer Alassod, Amjad Farooq, Xiaolin Shen, Taosif Ahmed, Mohammad Mamunur Rashid and Afshan Zareen

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method…

Abstract

Purpose

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method to clean the wastewater containing reactive dye. Moreover, TiO2 nano-materials are remarkable due to their photoactive properties and valuable applications in wastewater treatment.

Design/methodology/approach

In this research, TiO2 was synthesized and deposited effectively on cotton fibers and cellulose powder using ultrasound-assisted coating. Further, tetra butyl titanate was used as a precursor to the synthesis of TiO2 nanoparticles. Reactive dye (red 195) was used in this study. X-ray Diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were performed to prove the aptitude for the formation of crystal TiO2 on the cotton fibers and cellulose powder along with TiO2 nanoparticles as well as to analyze the chemical structure. Decoloration of the wastewater was investigated through ultraviolet (UV-Visible) light at 30 min.

Findings

The experimental results revealed that the decolorization was completed at 2.0 min with the cellulose nano TiO2 treatment whereas cotton nano TiO2 treated solution contained reactive dyestuffs even after the treatment of 2 min. This was the fastest method up to now than all reported methods for sustainable decolorization of wastewater by absorption. Furthermore, this study explored that the cellulose TiO2 nano-composite was more effective than the cotton TiO2 nano-composite of decoloration wastewater for the eco-friendly remedy.

Research limitations/implications

Cotton fibers and cellulose powder with nano-TiO2, and only reactive dye (red 195) were tested.

Practical implications

With reactive dye-containing wastewater, it seems to be easier to get rid of the dye than to retain it, especially from dyeing of yarn, fabric, apparel, and as well as other sectors where dyestuffs are used.

Social implications

This research would help to reduce pollution in the environment as well as save energy and cost.

Originality/value

Decoloration of wastewater treatment is an essential new track with nano-crystalline TiO2 to fast and efficient cleaning of reactive dyes containing wastewater used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 30