Search results

1 – 10 of 73
Article
Publication date: 1 June 2002

Roger L. Barker

This paper traces the evolution of objective measurement of textile hand and comfort from Pierce through modern methodology and approaches. Special emphasis is given to discuss…

3662

Abstract

This paper traces the evolution of objective measurement of textile hand and comfort from Pierce through modern methodology and approaches. Special emphasis is given to discuss the contribution of the Kawabata Evaluation System (KES) towards advancing the state of objective measurement. Laboratory case studies are used to show how data generated by the KES and other instruments can be integrated into a comprehensive approach that attempts to explain human comfort response to garment wear in terms of fabric mechanical, surface and heat and moisture transfer properties.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 June 2011

Antonin Havelka and Zdeněk Ku˙s

This paper aims to investigate the comfort properties of modern functional clothing, such as moisture and heat transport. Transport properties are evaluated for real barrier…

Abstract

Purpose

This paper aims to investigate the comfort properties of modern functional clothing, such as moisture and heat transport. Transport properties are evaluated for real barrier membrane clothes for sport application, under real weather conditions in Middle Europe.

Design/methodology/approach

The different combination of functional clothing, with barrier membrane, were investigated under different temperatures and relative moistures inside and outside clothing layers. Water vapour permeability was measured under the steady‐state conditions, by sweating guarded‐hotplate test.

Findings

This paper describes the theoretical analysis of moisture transport, and its influence on thermal conductivity; the paper investigates various barrier fabrics for sport apparel, and their ranges of water vapour transport ability under real weather conditions.

Research limitations/implications

All received results are based on the transport of water vapour through a semi‐permeable membrane and are supposed to be conducted mainly within a process of diffusion.

Originality/value

This paper is focused on the theoretical analysis of transport by diffusion of water vapour through porous semi‐permeable barrier textile material, and evaluates the real possibilities for sport applications. The level of transport is limited and mainly depends on the difference of the partial pressures of water vapours outside and inside the porous clothing material.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 October 2022

Manoj Kumar Imrith, Satyadev Rosunee and Roshan Unmar

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is…

Abstract

Purpose

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is highly cherished for summerwear, it is sine qua non to understand the structural parameters that effectively strike a good balance between UV protection and thermophysiological comfort of the wearer. Relatively heavy fabrics protect from UVR, but comfort is compromised because of waning porosity, increase in thickness and thermal insulation. The purpose of this paper is to engineer knits that will bestow maximum UV protection while preserving the thermophysiological comfort of the wearer.

Design/methodology/approach

In total, 27 cotton single jersey fabrics with different areal densities and yarn counts were selected. Ultraviolet protection factor (UPF) was calculated based on the work of Imrith (2022). To précis, the authors constructed a UV box to measure the UPF of fabrics, denoted as UPFB. UPFB data were correlated with AATCC 183-2004 and yielded high correlation, R2 0.977. It was concluded that UPF 50 corresponds to UPFB 94.3. Thermal comfort properties were measured on the Alambeta and water-vapour resistance on the Permetest. Linear programming (LP) was used to optimize UPFB and comfort. Linear optimization focused on maximizing UPFB while keeping the thermophysiological comfort and areal density as constraints.

Findings

The resulting linear geometrical and sensitivity analyses generated multiple technically feasible solutions of fabrics thickness and porosity that gave valid UPFB, thermal absorptivity and water-vapour and thermal resistance. Subsequently, an interactive optimization software was developed to predict the stitch length, tightness factor and yarn count for optimum UPFB from a given areal density. The predicted values were then used to knit seven 100% cotton single jersey fabrics and were tested for UV protection. All seven fabrics gave UPFB above the threshold, that is, higher than 94.3. The mathematical model demonstrated good correlations with the optimized parameters and experimental values.

Originality/value

The optimization software predicted the optimum UPFB reasonably well, starting from the fabric structural and constructional parameters. In addition, the models were developed as interactive user interfaces, which can be used by knitted fabric developers to engineer cotton knits for maximizing UV protection without compromising thermophysiological comfort. It has been demonstrated that LP is an efficient tool for the optimization and prediction of targeted knitted fabrics parameters.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 September 2019

Nilüfer Yıldız Varan and Güngör Durur

The purpose of this paper is to analyze the effects of treatments using chitosan in different degree of deacetylations (DDs) on thermophysiological comfort properties of nylon…

Abstract

Purpose

The purpose of this paper is to analyze the effects of treatments using chitosan in different degree of deacetylations (DDs) on thermophysiological comfort properties of nylon 6,6/elastane pressure garments using a large skin model hot plate instrumentation to prevent infection and excess sweating during burn scar management for future designs.

Design/methodology/approach

Chitosans in different DD (DD 70, DD 81 and nylon 6,6/elastane fabrics in different structures, then the total DD 90) are treated with thermal resistance (Rct) ((°ΔC)(m2)/W), total heat loss (Qt or THL) (W/m2), apparent total evaporative resistance ( R e t A ), ((ΔkPa)(m2)/W), apparent intrinsic evaporative resistance ( R e f A ), ((ΔkPa)(m2)/W) and total insulation values (It) (clo) were analyzed using the large skin model hot plate instrumentation in comparison with untreated control samples. Antimicrobial activities, washing tests and moisture regain properties were also evaluated.

Findings

It is found that chitosan DDs have a significant effect on thermophysiological comfort properties of nylon 6,6 fabrics. A small but statistically significant decrease was observed in thermal resistance (Rct) (Tog) and isolation (It) (clo) properties for higher chitosan DDs and for higher chitosan concentrations for all fabric samples after each treatment. Antimicrobial activity showed a small but statistically significant decrease for all samples with the increase of DD and fabrics treated with lower DD 70 of chitosan showed better antimicrobial activity for all samples. Additionally, fabrics treated with higher DD’s exhibited higher moisture regain.

Originality/value

Treatments with chitosan in different DD and in different concentrations impact the heat and moisture transfer properties of nylon 6,6 fabrics significantly. It is a reference to evaluate the thermophysiological comfort properties of pressure garments for future designs using dry and sweating skin tests while imparting antimicrobial activity with chitosans in different DDs.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 November 2022

Manoj Kumar Imrith, Satyadev Rosunee and Roshan Unmar

The thermophysiological comfort of fabrics is prerequisite as customers covet adequate moisture, heat management-supported and UV protective clothing that measure up to their…

Abstract

Purpose

The thermophysiological comfort of fabrics is prerequisite as customers covet adequate moisture, heat management-supported and UV protective clothing that measure up to their levels of activities and environmental conditions. Hitherto, scant tasks have been reported with the purpose of engineering both comfort and UV protection simultaneously. From that vantage point, the objective of this work is to develop a model for optimum UPF, air permeability, water-vapour resistance, thermal resistance, thermal absorptivity and areal density of knitted fabrics.

Design/methodology/approach

Weft knitted fabrics of various compositions were investigated. UPF was tested using the Labsphere UV transmittance analyser. The FX 3300 (Textest instruments) air permeability tester was used to test air permeability. Thermal comfort and water-vapour resistance were evaluated using the Alambeta and Permetest instruments, respectively. Based on image processing, the porosity was measured. Fabrics thickness and areal density were measured according to standard methods. Furthermore, parametric and non-parametric statistical test methods were applied to the data for analysis.

Findings

Linear regression was substantiated by Kolmogorov-Smirnov test. Then multiple linear regression of porosity and thickness together on UPF and comfort parameters were visually depicted by virtue of 3D linear plots. Residual analysis with quantile-quantile and probability plots, advocated the tests using the Shapiro-Wilk test. The result was validated by comparison with experimental data tested. The samples gave satisfactory relative errors and were supported by the z-test method. All tests indicated failure to reject the null hypothesis.

Originality/value

The predictive models were embedded into an interactive computer program. Fabric thickness and porosity are the inputs needed to run the program. It will predict the optimum UPF, areal density and thermophysiological comfort parameters. In a nutshell, knitters may use the program to determine optimum structural parameters for diverse permutations of UPF and thermophysiological comfort parameters; scilicet high UV protection together with low thermal insulation combined with low water-vapour resistance and high air permeability.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1098

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 1999

J.E. Ruckman, R. Murray and H.S. Choi

To evaluate the effectiveness of ventilation systems in outdoor jackets, two jackets were purchased and modified, one made of PTFE laminated fabric and the other made of…

1468

Abstract

To evaluate the effectiveness of ventilation systems in outdoor jackets, two jackets were purchased and modified, one made of PTFE laminated fabric and the other made of polyurethane coated fabric. Six male subjects undertook exercise routines simulating fell walking while wearing these jackets. The skin temperature at four different locations and the amount of perspiration generated during exercise were recorded for analysis. The experimental results were analysed using two‐ way analysis of variance. From the analysis it was found that during the exercise the design of the pit zip openings, especially with pit zip openings at both sleeve and side seams, in a jacket has an effect on thermal regulation, limiting the rate of temperature increase; however, during rest it is the fabric that plays the more important role. The results for the period of exercise suggest that the provision of ventilation at appropriate positions in the jacket could contribute considerably to heat loss irrespective of the use of breathable fabrics.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 June 2019

Wiah Wardiningsih and Olga Troynikov

The purpose of this paper is to investigate the influence and relationship of segment area and opening area in segmented protective pad in comparison to non-segmented pad to the…

Abstract

Purpose

The purpose of this paper is to investigate the influence and relationship of segment area and opening area in segmented protective pad in comparison to non-segmented pad to the energy absorption and performance attributes relevant to thermophysiological wear comfort.

Design/methodology/approach

The compressive stress-strain curves were obtained using Instron Tester and were used to analyse the energy absorption of the pads and the segmented pad assemblies. The dry thermal resistance and evaporative resistance of the non-segmented and segmented protective pads were obtained using MTNW Sweating Guarded Hot Plate.

Findings

The compression test results and performance attributes relevant to thermophysiological wear comfort test result demonstrated that the area segment and opening area of segmented pad influenced their energy absorption value, dry thermal resistance value and evaporative resistance value (permeability index value).

Originality/value

The results are expected to be useful for design and engineering of hip impact protective garments. Hip impact protective pads are used to prevent hip fractures in elderly people as a result of fall.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1248

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 73