Search results

1 – 1 of 1
Open Access
Article
Publication date: 4 August 2021

Ian L. Gordon, Seth Casden and Michael R. Hamblin

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing…

Abstract

Purpose

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing minerals that emit infrared radiation (IR) in response to body heat. IR-emitting fabrics have biological effects including the reduction of pain and inflammation and the stimulation of muscle function.

Design/methodology/approach

A randomized placebo-controlled trial recruited 80 subjects (40 per group) with a six-month history of chronic wrist or elbow pain (carpal tunnel syndrome, epicondylitis or arthritis) to wear an armband (real Celliant or placebo fabric) on the affected wrist or elbow for two weeks. Grip strength was measured by a dynamometer before and after the two-week study.

Findings

For the placebo group, the mean grip strength increased from 47.95 ± 25.14 (baseline) to 51.69 ± 27.35 (final), whereas for the Celliant group, it increased from 46.3 ± 22.02 to 54.1 ± 25.97. The mean per cent increase over the two weeks was +7.8% for placebo and +16.8% for Celliant (p = 0.0372). No adverse effects was observed.

Research limitations/implications

Limitations include the wide variation in grip strength in the participants at baseline measurement, which meant that only the percentage increase between baseline and final measurements showed a significant difference. Moreover, no subjective measurements of pain or objective neurophysiology testes was done.

Practical implications

Celliant armbands are easy to wear and have not been shown to produce any adverse effects. Therefore, there appears to be no barrier to prevent widespread uptake.

Social implications

IR-emitting textiles have been studied for their beneficial effects, both in patients diagnosed with various disorders and also in healthy volunteers for health and wellness purposes. Although there are many types of textile technology that might be used to produce IR-emitting fabrics, including coating of the fabric with a printed layer of ceramic material, incorporating discs of mineral into the garment, the authors feel that incorporating ceramic particles into the polymer fibers from which the fabric is woven is likely to be the most efficient way of achieving the goal.

Originality/value

Celliant armbands appear to be effective in painful upper limb inflammatory disorders, and further studies are warranted. The mechanism of action is not completely understood, but the hypothesis that the emitted IR radiation is absorbed by nanostructured intracellular water provides some theoretical justification.

Access

Only content I have access to

Year

Content type

1 – 1 of 1