Search results

1 – 10 of 438
Article
Publication date: 19 January 2015

Xinhua Yao, Sheng Li and Jianzhong Fu

The purpose of this paper is to study using thermoelectric module to harvest the waste heat from spindle units of machine tools and drive wireless sensors stable, thermal…

Abstract

Purpose

The purpose of this paper is to study using thermoelectric module to harvest the waste heat from spindle units of machine tools and drive wireless sensors stable, thermal structure design and optimization of the thermoelectric module.

Design/methodology/approach

In this paper, mesh-free-based method, rather than the standard finite element method, is used to analyze the thermal behavior of the thermoelectric modules with different structure. After that, experiments are done to obtain the real power output performance of those modules and evaluate the performance of driving a wireless sensor with those modules.

Findings

The paper provides that the difference in geometry structure can cause apparent change in surface temperature of heat-conducting plate, and the optimized thermoelectric module could increase the output voltage by about 7 per cent compared with the one without optimization.

Research limitations/implications

It is found that the structure changing of the thermoelectric module is not the only way to increase the harvesting power, so a high efficiency power manage system is needed to be studied in the future.

Practical implications

The paper includes implications for the development of self-powered wireless sensors in the spindle unit for machine tool monitoring.

Originality/value

The paper develops models of thermoelectric modules with different structures on a rotating spindle, and tests the performance of driving wireless sensors with those thermoelectric modules.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 March 2014

Sheng Li, Xinhua Yao and Jianzhong Fu

For using wireless sensors to monitor spindle units without opening the spindle shell to replace the battery, harvesting the waste heat from spindle units of machine tools for…

Abstract

Purpose

For using wireless sensors to monitor spindle units without opening the spindle shell to replace the battery, harvesting the waste heat from spindle units of machine tools for thermoelectric generation to drive wireless sensors is studied in this paper. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the thermal network method and the analogies between electrical and thermal domains are used in the simulation of power output performance of thermoelectric generation on a rotating spindle. After that, experiments are done to obtain the real power output performance of the generation and evaluate the feasibility to drive wireless sensors.

Findings

The paper provides that the output voltage of the thermoelectric generations was nearly linear with the rotating speed of the spindle, the output voltage was sensitive to the fixed position of the generations, and the thermoelectric system could drive the wireless sensor well most of the time during continuous operation of the spindle.

Research limitations/implications

It is found that the thermoelectric generation could not provide enough power in the early start-up stage of the spindle rotation, so a high-efficiency power manage system, which will be studied in the future research, is needed to handle this problem.

Practical implications

The paper includes implications for the development of self-powered wireless sensors in the spindle unit for machine tool monitoring.

Originality/value

The paper develops a model of the power output performance of thermoelectric generation on a rotating spindle and tests the feasibility to drive wireless sensors with this power.

Details

Sensor Review, vol. 34 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 June 2022

Mehmet Akif Ceviz, Faraz Afshari, Burak Muratçobanoğlu, Murat Ceylan and Eyüphan Manay

The purpose of this paper is to experimentally and numerically investigate the cooling performance of the air-to-water thermoelectric cooling system under different working…

416

Abstract

Purpose

The purpose of this paper is to experimentally and numerically investigate the cooling performance of the air-to-water thermoelectric cooling system under different working conditions.

Design/methodology/approach

An air-to-water thermoelectric cooling system was designed and manufactured according to the principle of discrete binary thermoelectric Peltier modules, and the thermal performance, heat transfer rate and average COP values were examined at different cooling water temperatures and voltages applied. Additionally, numerical simulations were performed by computational fluid dynamics approach to investigate the temperature distribution and airflow structure inside the cooling chamber.

Findings

Analyses were performed using experimental tests and numerical methods. It was concluded that, by decreasing the cooling water temperature from 20 to 5 °C, the average COP increases about 36%. The voltage analysis showed that the efficiency of the system does not always increase as the voltage rises; more importantly, the optimum voltage is different and depends on whether it is desired to increase COP or increase the cooling rate.

Originality/value

In the studies published in the field of thermoelectric cooling systems, little attention has been paid to the voltage applied and its relationship to other operating conditions. In most cases, the tests are performed at a constant voltage. In this study, several options, including applied voltage and cooling water temperature, were considered simultaneously and their effects on performance have been tested. It was found that under such studies, optimization work should be done to evaluate maximum performance in different working conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 May 2019

Dipak Sudam Patil, Rachayya R. Arakerimath and Pramod V. Walke

This paper aims to present an experimental investigation and optimization of a low-temperature thermoelectric module to examine the influence of the main operating conditions.

Abstract

Purpose

This paper aims to present an experimental investigation and optimization of a low-temperature thermoelectric module to examine the influence of the main operating conditions.

Design/methodology/approach

In this work, a comparison was made by varying the various operating parameters such as heat source temperature, the flow rate of the cold fluid and the external load resistance. A Taguchi method was applied to optimize the parameters of the system. Three factors, including the external load resistance, mass flow rate of water (at the heat sink side) and heater temperature (at the heat source side) along with different levels were taken into account. Analysis of variance was used to determine the significance and percentage contribution of each parameter.

Findings

The experimental results show that the maximum power output 8.22W and the maximum conversion efficiency 1.11 per cent were obtained at the heater temperature of 240°C, the cold fluid mass flow rate of 0.017 kg/s, module temperature difference of 45°C and the load resistance of 5 O. It was observed that the optimum parameter levels for maximum power output determined as 5 O external load resistance, 0.17 kg/s mass flow rate of water and 240°C heater temperature (A1B3C3). It reflects that these parameters influence on the optimum conditions. The heater temperature is the most significant parameter on the power output of the thermoelectric module.

Originality/value

It is clear from the confirmation test that experimental values and the predicted values are in good agreement.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2020

Mirosław Gracjan Gierczak, Eugeniusz Prociów and Andrzej Dziedzic

This paper aims to focus on the fabrication and characterization of mixed thin-/thick-film thermoelectric microgenerators, based on magnetron sputtered constantan (copper–nickel…

Abstract

Purpose

This paper aims to focus on the fabrication and characterization of mixed thin-/thick-film thermoelectric microgenerators, based on magnetron sputtered constantan (copper–nickel alloy) and screen-printed silver. To improve the adhesion of the constantan layer to the applied substrates, the additional chromium sublayer was used. The aim of the study was to investigate the influence of chromium sublayer on the electrical and thermoelectric properties of such hybrid microgenerators.

Design/methodology/approach

Fabrication of such structures consisted of several steps – magnetron sputtering of the chromium and then constantan layer, exposing the first arms of thermocouples, applying the second arms by screen-printing technology and firing the prepared structures in a belt furnace. The structures were made both on Al2O3 (alumina) and low temperature co-fired ceramics (LTCC) substrates.

Findings

To the best of the authors’ knowledge, for the first time, laser ablation process was applied to fabricate the first arms of thermocouples from a layer of constantan only or constantan with a chromium sublayer. Geometric measurements have shown that the mapping of mask pattern by laser ablation technique is very accurate.

Originality/value

The determined Seebeck coefficient of the realized structures was about 40.4 µV/K. After firing the exemplary structures at 850°C peak temperature, Seebeck coefficient is increased to an average value of 51 µV/K.

Details

Microelectronics International, vol. 37 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 August 2015

Piotr Markowski, Eugeniusz Prociów and Łukasz Urbaniak

The purpose of this paper is to determine the thermoelectric properties of the germanium-based thin films and selecting the most suitable ones for fabrication of micrognerators…

Abstract

Purpose

The purpose of this paper is to determine the thermoelectric properties of the germanium-based thin films and selecting the most suitable ones for fabrication of micrognerators.

Design/methodology/approach

The germanium layers were deposited by low pressure magnetron sputtering method, in the pressure of 10−3/104 mbar range. The amount of dopants (germanium or vanadium) was changed in a limited extent. The influence of such changes on the layers output properties was studied. Post-processing heat treatment at temperature below 823 K was applied to activate the layers. It leads to improve the electrical and thermoelectrical performance.

Findings

The special attention was paid to the power factor (PF = S2/ρ) of the layers. To estimate power factor (PF) electrical resistivity (ρ) and Seebeck coefficient (S) were determined. The achieved Seebeck coefficient value was 185 Volt/Kelvin (μV/K) for germanium doped with vanadium (Ge:V1.15) and 225 μV/K for germanium doped with gold(Ge:Au3.13) layers at room temperature. After activation process, the PF reached a value of 2.5 × 10−4 W/m · K2 for the Ge:Au3.13 and 1.1 × 10−4 W/m · K2 for the Ge:V1.15 layers.

Originality/value

The fabricated thermoelectric layers can be thermally annealed in temperature up to 823 K in the air and in 1,023 K under a nitrogen atmosphere. This enables integration of thin layers with thick-film technology. Corning glass or low temperature cofired ceramic was used as a substrate.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 April 2011

N.B. Crane, J. Tuckerman and G.N. Nielson

Additive manufacturing (AM) offers substantial flexibility in shape, but much less flexibility in materials and functionality – particularly at small size scales. A system for…

1665

Abstract

Purpose

Additive manufacturing (AM) offers substantial flexibility in shape, but much less flexibility in materials and functionality – particularly at small size scales. A system for automatically incorporating microscale components would enable the fabrication of objects with more functionality. The purpose of this paper is to consider the potential of self‐assembly to serve as an automated programmable integration method. In particular, it addresses the ability of random self‐assembly processes to successfully assemble objects with high performance despite the possibility of assembly errors.

Design/methodology/approach

A self‐assembled thermoelectric system is taken as a sample system. The performance expectations for these systems are then predicted using modified one‐dimensional models that incorporate the effects of random errors. Monte‐Carlo simulation is used to predict the likely performance of self‐assembled thermoelectric systems and evaluate the impact of key process and system design parameters.

Findings

While assembly yield can drop quickly with increasing numbers of assembled parts, large functional assemblies can be constructed by arranging components in parallel to provide redundancy. In some cases, the performance losses are minimal. Alternatively, sensing can be incorporated to identify perfect assemblies. For small assemblies, the probability of perfection may be high enough to achieve an acceptable assembly rate. Small assemblies could then be combined into larger functional systems.

Originality/value

The paper identifies two strategies that can guide the development of AM processes that incorporate miniature components to increase the system functionality. The analysis shows that this may be possible despite significant errors in the self‐assembly process because systems may be tolerant of significant assembly errors.

Details

Rapid Prototyping Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 August 2014

Piotr Markowski

– The purpose of this work was fabrication of a small energy harvester.

Abstract

Purpose

The purpose of this work was fabrication of a small energy harvester.

Design/methodology/approach

The multilayer thermoelectric power generator based on thick-film and low temperature co-fired ceramic (LTCC) technology was fabricated. Precise paths printing method was used to fabricate Ag/Ni and Ag/PdAg thermocouples on a number of unfired LTCC tapes. The tapes were put together to form a multilayer stack. The via holes were used to make the electrical connections between adjacent layers. Finally, the multilayer stack was fired in the appropriate thermal profile.

Findings

It consists of 450 thermocouples and generates output voltage of about 0.45 V and output electrical power of about 0.13 mW when a temperature difference along the structure is 135°C. In the paper, individual stages of energy harvester fabrication process as well as its output parameters are presented.

Originality/value

Miniaturized thermoelectric energy harvester based on thick-film and LTCC technology was fabricated. As materials, metal-based pastes were used. This is the first paper where multilayer thermoelectric harvester, fabricated with the aid of LTCC technology, was described.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 June 2022

Thong Duc Hong, Quan Thien Phan Nghiem, Binh Trong Nguyen and Tinh Van Mai

The purpose of this paper is to investigate the effect of different guide fins structures (i.e. single-layer and double-layer guide fins) on the exhaust flow and thermal…

Abstract

Purpose

The purpose of this paper is to investigate the effect of different guide fins structures (i.e. single-layer and double-layer guide fins) on the exhaust flow and thermal uniformity of the motorcycle exhaust thermoelectric generator.

Design/methodology/approach

One single-layer guide fins structure and three double-layer guide fins structures are numerically investigated in terms of exhaust flow uniformity with different exhaust properties. Then, the double-layer guide fins structure achieving the highest flow uniformity is fabricated and experimentally investigated on a motorcycle at different engine speeds together with the single-layer guide fins structure to evaluate the thermal uniformity.

Findings

The double-layer guide fins structure obtains a better flow uniformity and thermal uniformity compared to the single-layer structure. Among surveyed structures, the double-layer structure with three closed V-shape guide fins achieves the highest flow uniformity. This structure also improves the thermal uniformity from 3.0 to 90.1% in comparison with the single-layer structure in experiments.

Originality/value

In this paper, the double-layer guide fins structures are derived from the improvement of the single-layer guide fins structure. The fluid flow uniformity index is applied as a measure for assessing the exhaust flow uniformity. The enhancement of thermal uniformity of the double-layer guide fins structure is expected to increase the longevity and performance of the motorcycle exhaust thermoelectric generator.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 2016

Piotr M. Markowski

The purpose of this paper was to develop the methodology of thick-film/low temperature co-fired ceramic (LTCC) multilayer thermoelectric microgenerator fabrication including the…

Abstract

Purpose

The purpose of this paper was to develop the methodology of thick-film/low temperature co-fired ceramic (LTCC) multilayer thermoelectric microgenerator fabrication including the procedure of silver-nickel thermocouples integration with LTCC.

Design/methodology/approach

To miniaturize the structures and to increase the output parameters (generated voltage, electrical power), the microgenerator was designed as multilayer systems. It allows to reduce size of the system and to increase the number of thermocouples integrated inside the structure. It also protects buried thermocouples against exposure to harmful external factors (e.g. moisture, oxidation and mechanical exposures). As a substrate, LTCC was used. For the thermocouples fabrication, thick-film pastes based on silver and nickel were chosen. Ag/Ni thermocouple has nearly three times higher Seebeck coefficient and 30 per cent lower electrical resistance than the combination of Ag/PdAg used in previous works of the author.

Findings

A multi-layer thick-film thermoelectric generator based on LTCC and Ag, Ni pastes was fabricated. Thirty Ag/Ni thermocouples were precisely screen-printed on few layers. Thermocouples’ arms are 15 mm long and about 150 μm wide. Interlayer connections (via-holes filled with conductive paste) provided the electrical contact between the layers. The biggest fabricated harvester consisted of 90 miniature thermocouples buried inside the LTCC.

Originality/value

The paper presents the results of research that provided to optimize the co-firing process of the LTCC/Ni set. In the result, the methodology of co-firing of silver-nickel thermocouples and LTCC ceramic was elaborated. Also, the methodology of fabrication of miniature thermoelectric energy harvesters was optimized.

Details

Microelectronics International, vol. 33 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 438