Search results

1 – 10 of over 2000
Article
Publication date: 1 October 2018

Kaiwen Pang, Yaojun Li, Wei Yang and Zhuqing Liu

This study aims to develop and validate a new cavitation model that considers thermodynamic effects for high-temperature water flows.

Abstract

Purpose

This study aims to develop and validate a new cavitation model that considers thermodynamic effects for high-temperature water flows.

Design/methodology/approach

The Rayleigh–Plesset equation and “B-factor” method proposed by Franc are used to construct a new cavitation model called “thermodynamic Zwarte–Gerbere–Belamri” (TZGB) by introducing the thermodynamic effects into the original ZGB model. Furthermore, the viscous term of the Rayleigh–Plesset equation is considered in the TZGB model, and the model coefficients are formulated as a function of temperature. Cavitating flows around the NACA0015 hydrofoil under different water temperatures (25°C, 50°C and 70°C) at the angle of attack of 5° are calculated.

Findings

Results of the investigated temperatures show good agreement with the available experimental data. Given that the thermodynamic and viscosity effects are included in the TZGB model and the model coefficients are treated as a function of temperature, the TZGB model shows better performance in predicting the pressure coefficient distribution and length of cavity than the original ZGB cavitation model and other models do. The TZGB model aims to determine the thermodynamic and viscosity effects and perform better than the other models in predicting the mass transfer rate, particularly in high-temperature water.

Originality/value

The TZGB model shows potential in predicting the cavitating flows at high temperature and the computational cost of this model is similar to that of the original ZGB model.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2006

E. Solmaz and F. Öztürk

The results obtained from previous studies are not found to be sufficient for hydrostatic bearing design optimisation since thermodynamic effects are not considered. Therefore…

445

Abstract

Purpose

The results obtained from previous studies are not found to be sufficient for hydrostatic bearing design optimisation since thermodynamic effects are not considered. Therefore, this research is presented with considering parameter variations based on thermodynamic effects for more efficient optimisation of bearing parameters.

Design/methodology/approach

Single and multi‐criteria approaches were carried out to determine the hydrostatic journal bearing design parameters so that the total performance of the system is optimal.

Findings

It is seen that firstly, the results of single criteria approaches for minimum power, bearing coefficient and minimum temperature rise in circular hydrostatic axial journal bearings are not sufficient, secondly, there is a crucial need to consider multiple criteria optimisation cases and thirdly, thermodynamic effects must be taken into account for more efficient approach to compute the optimum values of bearing design parameters.

Research limitations/implications

Further research is required to develop a genetic algorithm‐based optimisation for bearing design problems considering thermodynamic effects and multiple criteria approaches to compare the results of present study.

Practical implications

Comparison of optimisation results of single and multi‐criteria approaches are given to show temperature variation effects on bearing performance.

Originality/value

Although, there are some works related to design and optimisation of hydrostatic bearings, most of them consider the single criteria optimisation and thermodynamic effects are not usually taken into account. Therefore, this research is different than others since the present approach is implemented with thermodynamic effects and also not limited to single criteria approach.

Details

Industrial Lubrication and Tribology, vol. 58 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 January 2020

Chunlei Shao, Zhongyuan Zhang and Jianfeng Zhou

The purpose of this paper is to accurately predict the cavitation performance of a cryogenic pump and reveal the influence of the inlet pressure, the surface roughness and the…

Abstract

Purpose

The purpose of this paper is to accurately predict the cavitation performance of a cryogenic pump and reveal the influence of the inlet pressure, the surface roughness and the flow rate on the cavitation performance.

Design/methodology/approach

Firstly, the Zwart cavitation model was modified by considering the thermodynamic effect. Secondly, the feasibility of the modified model was validated by the cavitation test of a hydrofoil. Thirdly, the effects of the inlet pressure, the surface roughness and the flow rate on cavitation flow in the cryogenic pump were studied by using the modified cavitation model.

Findings

The modified cavitation model can predict the cavitation performance of the cryogenic pump more accurately than the Zwart cavitation model. The thermodynamic effect inhibits cavitation development to a certain extent. The higher the vapor volume fraction, the lower the pressure and the lower the temperature. At the initial stage of the cavitation, the head increases first and then decreases with the increase of the roughness. When the cavitation develops to a certain degree, the head decreases with the increase of the roughness. With the decrease of the flow rate, the hydraulic loss increases and the cavitation at the impeller intensifies.

Originality/value

A cavitation model considering the thermodynamic effect is proposed. The mechanism of the influence of the roughness on the performance of the cryogenic pump is revealed from two aspects. Taking the hydraulic loss as a bridge, the relationships among flow rates, vapor volume fractions, streamlines, temperatures and pressures are established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1991

Gerhard Wachutka

The thermodynamic model” constitutes a unified theoretical framework for the coupled simulation of carrier and energy flow in semiconductor devices under general ambient…

Abstract

The thermodynamic model” constitutes a unified theoretical framework for the coupled simulation of carrier and energy flow in semiconductor devices under general ambient conditions such as, e.g., the presence of a quasi‐static magnetic field or the interaction with an electromagnetic radiation field (light). The current relations governing particle and heat transport are derived from the principles of irreversible phenomenological thermodynamics; the driving forces include drift, diffusion, thermal diffusion, and deflection by the Lorentz force. All transport coefficients may be interpreted in terms of well‐known thermodynamic effects and, hence, can be obtained from theoretical calculations as well as directly from experimental data. The thermodynamic model allows the consistent treatment of a wide variety of physical phenomena which are relevant for both the operation of electronic devices (e.g., lattice heating, hot carrier and low temperature effects) and the function of microsensors and actuators (e.g., thermoelectricity, galvanomagnetism and thermomagnetism).

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 10 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 13 April 2010

Liang Zhang, Song-bai Xue, Li-li Gao, Yan Chen, Sheng-lin Yu, Zhong Sheng and Guang Zeng

The purpose of this paper is to investigate the effects of minor addition of the rare earth (RE) element cerium, Ce, on the microstructures and creep properties of Sn-Ag-Cu solder…

Abstract

Purpose

The purpose of this paper is to investigate the effects of minor addition of the rare earth (RE) element cerium, Ce, on the microstructures and creep properties of Sn-Ag-Cu solder alloys.

Design/methodology/approach

The pure Sn, Sn-Cu alloy, Sn-Ag alloy and Cu-Ce alloy were used as raw materials. Sn-Ag-Cu alloys with different contents of RE Ce were chosen to compare with Sn-Ag-Cu. The raw materials of Sn, Sn-Cu alloy, Sn-Ag alloy, Cu-Ce alloy were melted in a ceramic crucible, and were melted at 550°C ± 1°C for 40 minutes. To homogenize the solder alloy, mechanical stirring was performed every ten minutes using a glass rod. During the melting, KC1 + LiCI (1.3:1), were used over the surface of liquid solder to prevent oxidation. The melted solder was chill cast into a rod.

Findings

It is found that the microstructure exhibits smaller grains and the Ag3Sn/Cu6Sn5 intermetallic compound (IMC) phases are modified in matrix with the addition of Ce. In particular, the addition of 0.03 wt.% Ce to the Sn-Ag-Cu solder can refine the microstructures and decrease the thickness of the IMC layers of Sn-Ag-Cu solder alloys. Meanwhile, thermodynamic analysis showed that these phenomena could be attributed to the reduction of the driving force for Cu-Sn IMC formation due to the addition of Ce. Results calculated using the thermodynamic method are close to the above experimental data. Thus, the optimum content of Ce in Sn-Ag-Cu solder alloys should be about 0.030 percent. Additionally, the effect of Ce on the creep rupture life of Sn-Ag-Cu soldered joints was studied. It was found that the creep rupture life may be increased up to 7.5 times more than that of the original Sn-Ag-Cu alloy, when Ce accounts for 0.030 percent.

Originality/value

This paper usefully investigates the effects of the RE cerium (Ce), on the microstructures and creep properties of Sn-Ag-Cu solder alloys, optimizing the quantity of Ce in the Sn-Ag-Cu solder alloy through a thermodynamic method and by creep-rupture life testing.

Details

Soldering & Surface Mount Technology, vol. 22 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Book part
Publication date: 5 June 2023

Mehdi Ebrahimi, David S-K. Ting and Rupp Carriveau

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced…

Abstract

Sustainable development calls for a larger share of intermittent renewable energy. To mitigate this intermittency, Compressed Air Energy Storage (CAES) technology was introduced. This technology can be made more sustainable by recovering the heat of the compression phase and reusing it during the discharge phase, resulting in an adiabatic CAES without the need for burning of fossil fuels. The key process parameters of CAES are temperature, pressure ratios, and the mass flow rates of air and thermal fluids. The variation in these parameters during the charge and discharge phases significantly influences the performance of CAES plants. In this chapter, the transient thermodynamic behavior of the system under various operating conditions is analyzed and the impact of heat recovery on the discharge phase energy efficiency, power generation, and CO2 emissions is studied. Simulations are carried out over the air pressure range from 2,500 to 7,000 kPa for a 65 MW system over a five-hour discharge duration. It is also assumed that the heat loss in the air storage and the hot thermal fluid tank is insignificant and standby duration does not impact the status of the system. This result shows that the system exergy and the generated power are more sensitive to pressure change at higher pressures. This work also reveals that every 10°C increase on the temperature of the stored air can lead to a 0.83% improvement in the energy efficiency. The result of the transient thermodynamic model is used to estimate the reduction in CO2 emissions in CAES systems. According to the obtained result, a 65 MW ACAES plant can reduce about 17,794 tons of CO2 emission per year compared to a traditional CAES system with the same capacity.

Article
Publication date: 21 December 2017

Sunita Deswal, Baljit Singh Punia and Kapil Kumar Kalkal

The dual-phase-lag (DPL) model is applied to study the effect of the gravity field and micropolarity on the wave propagation in a two-temperature generalized thermoelastic problem…

Abstract

Purpose

The dual-phase-lag (DPL) model is applied to study the effect of the gravity field and micropolarity on the wave propagation in a two-temperature generalized thermoelastic problem for a medium. The paper aims to discuss this issue.

Design/methodology/approach

The exact expressions of the considered variables are obtained by using normal mode analysis.

Findings

Numerical results for the field quantities are given in the physical domain and illustrated graphically to show the effect of angle of inclination. Comparisons of the physical quantities are also shown in figure to study the effect of gravity and two-temperature parameter.

Originality/value

This paper is concerned with the analysis of transient wave phenomena in a micropolar thermoelastic half-space subjected to inclined load. The governing equations are formulated in the context of two-temperature generalized thermoelasticity theory with DPLs. A medium is assumed to be initially quiescent and under the effect of gravity. An analytical solution of the problem is obtained by employing normal mode analysis. Numerical estimates of displacement, stresses and temperatures are computed for magnesium crystal-like material and are illustrated graphically. Comparisons of the physical quantities are shown in figures to study the effects of gravity, two-temperature parameter and angle of inclination. Some particular cases of interest have also been inferred from the present problem.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 March 2012

Xugang Zhang, Bin Zhang, Mingming Sun, Jianhui Li, Lei Wang and Chuanli Qin

The purpose of this paper is to obtain liquid acrylate oligomers containing carboxyl groups as excellent toughening agents for epoxy resins.

Abstract

Purpose

The purpose of this paper is to obtain liquid acrylate oligomers containing carboxyl groups as excellent toughening agents for epoxy resins.

Design/methodology/approach

Liquid acrylate oligomers containing carboxyl groups were synthesised by the solution polymerisation of butyl acrylate (BA), acrylic acid (AA) and acrylonitrile (AN) as monomers. The liquid acrylate oligomers were used as the toughening agents for epoxy resins. The chemical structure of the oligomers was characterised by 13C nuclear magnetic resonance (NMR) spectroscope. The morphology of modified epoxy networks was analysed by scanning electron microscope (SEM). The mechanical and thermodynamic properties were measured by universal testing machine and dynamic mechanical analyser (DMA).

Findings

The results show that AA and oligomer concentrations have great influence on the morphology, mechanical and thermodynamic properties of the modified epoxy networks. When the 10 wt percent oligomer containing BA and AN and AA in the ratio of 75/20/5 is used to modify the epoxy resin, the increase in impact strength of the modified epoxy network is 291.5 percent over the unmodified epoxy network due to addition of the oligomers without a sacrifice in heat‐resistance properties. Fracture surface analysis by SEM indicates the presence of a two‐phase microstructure.

Practical implications

The modified epoxy networks can be used as high performance materials such as adhesives, sealants and matrices of composites.

Originality/value

The liquid acrylate oligomers containing carboxyl and nitrile groups which were synthesised with BA, AA and AN as monomers by the solution polymerisation are novel and can greatly increase the toughness of epoxy resins without loss of thermal resistance.

Details

Pigment & Resin Technology, vol. 41 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 July 2017

Eric Goncalves and Dia Zeidan

The aim of this work is to quantify the relative importance of the turbulence modelling for cavitating flows in thermal regime. A comparison of various transport-equation…

Abstract

Purpose

The aim of this work is to quantify the relative importance of the turbulence modelling for cavitating flows in thermal regime. A comparison of various transport-equation turbulence models and a study of the influence of the turbulent Prandtl number appearing in the formulation of the turbulent heat flux are proposed. Numerical simulations are performed on a cavitating Venturi flow for which the running fluid is freon R-114 and results are compared with experimental data.

Design/methodology/approach

A compressible, two-phase, one-fluid Navier–Stokes solver has been developed to investigate the behaviour of cavitation models including thermodynamic effects. The code is composed by three conservation laws for mixture variables (mass, momentum and total energy) and a supplementary transport equation for the volume fraction of gas. The mass transfer between phases is closed assuming its proportionality to the mixture velocity divergence.

Findings

The influence of turbulence model as regard to the cooling effect due to the vaporization is weak. Only the kε Jones–Launder model under-estimates the temperature drop. The amplitude of the wall temperature drop near the Venturi throat increases with the augmentation of the turbulent Prandtl number.

Originality/value

The interaction between Reynolds-averaged Navier–Stokes turbulence closure and non-isothermal phase transition is rarely studied. It is the first time such a study on the turbulent Prandtl number effect is reported in cavitating flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2021

Hakan Aygün

Usage of gas turbine engines has increased by day due to rising demand for military and civil applications. This case results in investigating diverse topics related to energy…

Abstract

Purpose

Usage of gas turbine engines has increased by day due to rising demand for military and civil applications. This case results in investigating diverse topics related to energy efficiency and irreversibility of these systems. The purpose of this paper is to perform a detailed entropy assessment of turbojet engines for different flight conditions.

Design/methodology/approach

In this study, for small turbojet engines used in unmanned aerial vehicles, parametric cycle analysis is carried out at (sea level-zero Mach (hereinafter phase-I)) and (altitude of 9,000 m- Mach of 0.7 (hereinafter phase-II)). Based on this analysis, variation of performance and thermodynamic parameters with respect to change in isentropic efficiency of the compressor (CIE) and turbine (TIE) is examined at both phases. In this context, the examined ranges for CIE is between 0.78 and 0.88 whereas TIE is between 0.85 and 0.95.

Findings

Increasing isentropic efficiency decreases entropy production of the small turbojet engine. Moreover, the highest entropy production occurs in the combustor in the comparison of other components. Namely, it decreases from 2.81 to 2.69 kW/K at phase-I and decreases from 1.44 to 1.39 kW/K at phase-II owing to rising CIE.

Practical implications

It is thought that this study helps in understanding the relationship between entropy production and the efficiency of components. Namely, the approach used in the current analysis could help decision-makers or designers to determine the optimum value of design variables.

Originality/value

Due to rising isentropic efficiencies of both components, it is observed that specific fuel consumption (SFC) decreases whereas specific thrust (ST) increases. Also, the isentropic efficiency of a compressor affects relatively SFC and ST higher than that of the turbine.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 2000