Search results

1 – 10 of over 1000
Article
Publication date: 15 June 2021

Hakan Aygün

Usage of gas turbine engines has increased by day due to rising demand for military and civil applications. This case results in investigating diverse topics related to energy…

Abstract

Purpose

Usage of gas turbine engines has increased by day due to rising demand for military and civil applications. This case results in investigating diverse topics related to energy efficiency and irreversibility of these systems. The purpose of this paper is to perform a detailed entropy assessment of turbojet engines for different flight conditions.

Design/methodology/approach

In this study, for small turbojet engines used in unmanned aerial vehicles, parametric cycle analysis is carried out at (sea level-zero Mach (hereinafter phase-I)) and (altitude of 9,000 m- Mach of 0.7 (hereinafter phase-II)). Based on this analysis, variation of performance and thermodynamic parameters with respect to change in isentropic efficiency of the compressor (CIE) and turbine (TIE) is examined at both phases. In this context, the examined ranges for CIE is between 0.78 and 0.88 whereas TIE is between 0.85 and 0.95.

Findings

Increasing isentropic efficiency decreases entropy production of the small turbojet engine. Moreover, the highest entropy production occurs in the combustor in the comparison of other components. Namely, it decreases from 2.81 to 2.69 kW/K at phase-I and decreases from 1.44 to 1.39 kW/K at phase-II owing to rising CIE.

Practical implications

It is thought that this study helps in understanding the relationship between entropy production and the efficiency of components. Namely, the approach used in the current analysis could help decision-makers or designers to determine the optimum value of design variables.

Originality/value

Due to rising isentropic efficiencies of both components, it is observed that specific fuel consumption (SFC) decreases whereas specific thrust (ST) increases. Also, the isentropic efficiency of a compressor affects relatively SFC and ST higher than that of the turbine.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 December 2018

Hongbin Zhao, Yu Cao, Chang Liu and Xiang Qi

The purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence…

Abstract

Purpose

The purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence of the environmental conditions, operating conditions and gas conditions on the performance of the system and on quantifying the distribution of useful energy loss and the saving potential of the integrated system changing with different parameters.

Design/methodology/approach

The working process of COG-CCHP was simulated through the establishment of system flow and thermal analysis mathematical model. Using exergy analysis method, the COG-CCHP system’s energy consumption status and the performance changing rules were analyzed.

Findings

The results showed that the combustion chamber has the largest exergy loss among the thermal equipments. Reducing the environmental temperature and pressure can improve the entire system’s reasonable degree of energy. Higher temperature and pressure improved the system’s perfection degree of energy use. Relatively high level of hydrogen and low content of water in COG and an optimal range of CH4 volume fraction between 35 per cent and 46 per cent are required to ensure high exergy efficiency of this integration system.

Originality/value

This paper proposed a CCHP system with the utilization of coke oven gas (COG) and quantified the distribution of useful energy loss and the saving potential of the integrated system under different environmental, operating and gas conditions. The weak links of energy consumption within the system were analyzed, and the characteristics of COG in this way of using were illustrated. This study can provide certain guiding basis for further research and development of the CCHP system performance.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 April 2016

Sunday Olayinka Oyedepo, Richard Olayiwola Fagbenle, Samuel Sunday Adefila and Md Mahbub Alam

This study aims to use an environomics method to assess the environmental impacts of selected gas turbine power plants in Nigeria.

Abstract

Purpose

This study aims to use an environomics method to assess the environmental impacts of selected gas turbine power plants in Nigeria.

Design/methodology/approach

In this study, exergoenvironomic analysis has been carried out to investigate the environmental impact of selected gas turbine power plants in Nigeria from an exergetic point of view.

Findings

The exergy analysis reveals that the combustion chamber is the most exergy destructive component compared to other cycle components. The exergy destruction of this component can be reduced by increasing gas turbine inlet temperature (GTIT). The results of the study show that thermodynamic inefficiency is responsible for the environmental impact associated with gas turbine components. The study further shows that CO2 emissions and cost of environmental impact decrease with increasing GTIT.

Originality/value

The exergo-environomic parameters computed in this study are CO2 emission in kg per MWh of electricity generated, depletion number, sustainability index, cost flow rate of environmental impacts (Ċenv) in $/h and total cost rates of products (ĊTot) in $/hr. For the period considered, the CO2 emissions for the selected plants vary from 100.18 to 408.78 kgCO2/MWhm, while cost flow rate of environmental impacts varies from $40.18 /h to $276.97 /h and the total cost rates of products vary from $2935.69/h to $12,232.84/h. The depletion number and sustainability index vary from 0.69 to 0.84 and 1.20 to 1.44, respectively.

Details

World Journal of Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 August 2017

Deepak Tiwari, Ahmad Faizan Sherwani, Mohammad Asjad and Akhilesh Arora

The purpose of this paper is to investigate the effect of four controllable parameters (fuel mixture, evaporation bubble point temperature, expander inlet temperature and…

Abstract

Purpose

The purpose of this paper is to investigate the effect of four controllable parameters (fuel mixture, evaporation bubble point temperature, expander inlet temperature and condensation dew point temperature) of a solar-driven organic Rankine cycle (ORC) on the first-law efficiency, the exergetic efficiency, the exergy destruction and the volume flow ratio (expander outlet/expander inlet).

Design/methodology/approach

Nine experiments as per Taguchi’s standard L9 orthogonal array were performed on the solar-driven ORC. Subsequently, multi-response optimization was performed using grey relational and principal component analyses.

Findings

The results revealed that the grey relational analysis along with the principal component analysis is a simple as well as effective method for solving the multi-response optimization problem and it provides the optimal combination of the solar-driven ORC parameters. Further, the analysis of variance was also employed to identify the most significant parameter based on the percentage of contribution of each cyclic parameter. Confirmation tests were performed to check the validity of the results which revealed good agreement between predicted and experimental values of the response variables at optimum combination of the input parameters. The optimal combination of process parameters is the set with A3 (the best fuel mixture in the context of optimal performance is 0.9 percent butane and 0.1 percent pentane by weight), B2 (evaporation bubble point temperature=358 K), C1 (condensation dew point temperature=300 K) and D3 (expander inlet temperature=370 K).

Research limitations/implications

In this research, the Taguchi-based grey relational analysis coupled with the principal components analysis has been successfully carried out, whereas for any optimized solution, it is required to have a real-time scenario that may be taken into consideration by the application of different soft computing techniques like genetic algorithm, simulated annealing, etc. The results generated are purely based on theoretical modeling, and, for further research, experimental analyses are required to consolidate the generated results.

Originality/value

This piece of research work will be helpful to users of solar energy, academicians, researchers and other concerned persons, in understanding the importance, severity and benefits obtained by the application, implementation and optimization of the cyclic parameters of the solar-driven ORC.

Details

Grey Systems: Theory and Application, vol. 7 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 2 February 2022

Jinghua Xu, Kunqian Liu, Zhi Liu, Fuqiang Zhang, Shuyou Zhang and Jianrong Tan

Most rapid prototyping (RP) relies on energy fields to handle materials, among which electricity has been much more utilized, resulting in distinctive responsiveness of…

Abstract

Purpose

Most rapid prototyping (RP) relies on energy fields to handle materials, among which electricity has been much more utilized, resulting in distinctive responsiveness of non-linear, overshoot, variable inertia, etc. The purpose of this paper is to eliminate the drawbacks of array nozzle clogging, stringing, melt sagging, particularly in multi-material RP, by focusing on the electrothermal response so as to adaptively distribute thermal more accurate, rapid and balanced.

Design/methodology/approach

This paper presents an electrothermal response optimization method of nozzle structure for multi-material RP based on fuzzy adaptive control (FAC). The structural, physical and control model are successively logically built. The fractional order electrothermal model is identified by Riemann Liouville fractional differential equation, using the bisection method to approximate the physical model via least square method to minimize residual sum of squares. The FAC is thereafter implemented by defining fuzzy proportion integration differentiation control rules and fuzzy membership functions for fuzzy inference and defuzzification.

Findings

The transient thermodynamic and structural statics, as well as flow field analysis, are conducted. The response time, mean temperature difference and thermal deformation can be found using thermal-solid coupling finite element analysis. In physical experimental research, temperature change, together with material extrusion loading, were measured. Both numerical and physical studies have revealed findings that the electrothermal responsiveness varies with the three-dimensional structure, materials and energy sources, which can be optimized by FAC.

Originality/value

The proposed FAC provides an optimization method for extrusion-based multi-material RP between the balance of thermal response and energy efficiency through fulfilling potential of the hardware configuration. The originality may be widely adopted alongside increasing requirements on high quality and high efficiency RP.

Article
Publication date: 1 December 2017

Qiushi Hao, Benchen Fu, Yu Shao and Liying Wang

This study aims to explore the spatial distribution characteristics and spactial reciprocity between industrial parks (IPs) and vocational education parks (VEPs): agglomeration…

Abstract

This study aims to explore the spatial distribution characteristics and spactial reciprocity between industrial parks (IPs) and vocational education parks (VEPs): agglomeration density, functional matching, spatial organization efficiency, as well as space intensive utility. To achieve this objective, IPs and VEPs in urban centers of Jiangsu Province are selected as the objects of the study. First, spatial analysis of thermodynamic diagrams is employed in this study to qualitatively analyze the evolutionary characteristics of the spatial distribution of IPs and VEPs to explore the spatial aggregation characteristics of their clustering, integration, and comprehensive crossover. Second, a horizontal comparison of the data and indexes concerned reveals that areas with high agglomeration and functional matching exhibit a sound spatial reciprocity. Third, this study crystallizes the four structural prototpye paradigms formed during the reciprocity evolution between IPs and VEPs; it compares spatial organization efficiency, with the agglomeration–core structure ranking first, followed by the circle–core structure. Finally, SPSS is used to analyze the space intensive utility in order to verify the conclusions of qualitative analysis. The findings can comprehensively explain the regularities of the spatial distribution and reciprocity between IPs and VEPs. The findngs can also elucidate the design of regional industrial development and educational programs.

Details

Open House International, vol. 42 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 April 1980

AUREL AVRAMESCU

Aiming to provide a common theoretical foundation for all known biblio‐metric laws, the author starts from a systemic view of the information transfer process and assimilates it…

Abstract

Aiming to provide a common theoretical foundation for all known biblio‐metric laws, the author starts from a systemic view of the information transfer process and assimilates it with a physical diffusion process, in particular the conduction of heat in solids. Previous literature induces in the properly ranked space of new authors an interest potential (temperature) confirmed by exchange of reference‐citation pairs, and driving a controlled information flow. The model gives its distribution for given initial and borderline conditions, allowing at the same time the establishment of new definitions for informational energy and entropy, which are coherent with the corresponding physical ones. The theory shows that impulsory energy supply is bound to negative entropy inflow which brakes the normal entropy ‘production’ in the ‘dissipative’ structures of the considered system. In this way the introduction of information into concrete thermodynamic systems analysis can hopefully be expected.

Details

Journal of Documentation, vol. 36 no. 4
Type: Research Article
ISSN: 0022-0418

Article
Publication date: 5 January 2022

Kai Tan, Victor Postel, Yujia Liu, Dongtong Yang, Sen Tang, Chong Wang and Qingyuan Wang

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further…

Abstract

Purpose

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further efforts on better understanding in early stage of a crack are beneficial to estimating and preventing catastrophic damage for a long period service.

Design/methodology/approach

Dependent on the ultrasonic loading system, a novel method of in situ photomicroscope is established to study the crack behaviors in VHCF regime.

Findings

This in situ photomicroscope method provides advantages in combination with fatigue damage monitoring at high magnification, a large number of cycles, and efficiency. Visional investigation with attached image proceeding code proves that the method has high resolution on both size and time, which permits reliable accuracy on small crack growth rate. It is observed that the crack propagation trends slower in the overall small crack stage down to the level of 10–11 m/cycle. Strain analysis relays on a real-time recording which is applied by using digital image correlation. Infrared camera recording indicates the method is also suitable for thermodynamic study while growth of damage.

Originality/value

Benefiting from this method, it is more convenient and efficient to study the short crack propagation in VHCF regime.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 March 2018

Yasin Şöhret and T. Hikmet Karakoc

It is essential to develop more environment-friendly energy systems to prevent climate change and minimize environmental impact. Within this scope, many studies are performed on…

Abstract

Purpose

It is essential to develop more environment-friendly energy systems to prevent climate change and minimize environmental impact. Within this scope, many studies are performed on performance and environmental assessments of many types of energy systems. This paper, different from previous studies, aims to prove exergy performance of a low-emission combustor of an aero-engine.

Design/methodology/approach

It is a well-known fact that, with respect to previous exergy analysis, highest exergy destruction occurs in the combustor component of the engine. For this reason, it is required to evaluate a low-emission aero-engine combustor thermodynamically to understand the state of the art according to the authors’ best of knowledge. In this framework, combustor has been operated at numerous conditions (variable engine load) and evaluated.

Findings

As a conclusion of the study, the impact of emission reduction on performance improvement of the aero-engine combustors exergetically is presented. It is stated that exergy efficiency of the low-emission aero-engine combustor is found to be 64.69, 61.95 and 71.97 per cent under various operating conditions.

Practical implications

Results obtained in this paper may be beneficial for researchers who are interested in combustion and propulsion technology and thermal sciences.

Originality/value

Different from former studies, the impact of operating conditions on performance of a combustor is examined from the viewpoint of thermodynamics.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 July 2021

Noureddine El Messaoudi, Mohammed El Khomri, Zahra Goodarzvand Chegini, Abdellah Dbik, Safae Bentahar, Munawar Iqbal, Amane Jada and Abdellah Lacherai

This paper aims to focus on studying the batch desorption of adsorbed crystal violet (CV) from date stones (Phoenix dactylifera), untreated (UDS) and treated using NaOH (TDS).

Abstract

Purpose

This paper aims to focus on studying the batch desorption of adsorbed crystal violet (CV) from date stones (Phoenix dactylifera), untreated (UDS) and treated using NaOH (TDS).

Design/methodology/approach

The process variables such as different desorbing agents, volume and concentration of the desorbing agent, contact time, dye concentration before adsorption and temperature affecting CV desorption from CV-loaded untreated date stones (CV@UDS) and treated adsorbent (CV@TDS) were optimized. The UDS and TDS were regenerated using 0.6 m HCl as eluent.

Findings

The HCl solution was an excellent eluent for the CV desorption from CV@UDS (96.45%) and CV@TDS (98.11%). The second-order model and the Langmuir model well exemplified experimental data with maximum desorption capacities were 63.29 mg g−1 for the CV@UDS and 243.90 mg g−1 for the CV@TDS. The calculated thermodynamic showed that the CV desorption was spontaneous, endothermic and physical. Good regeneration and reusability of UDS and TDS for the CV removal for four consecutive adsorption–desorption cycles.

Practical implications

This study provided a good example of reusing UDS and TDS with NaOH for fast removal of a toxic organic pollutant, CV from the wastewaters.

Originality/value

The use of UDS and TDS with NaOH for the first time for desorption study and their reusability to removing CV from their aqueous solutions.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 1000