Search results

1 – 10 of over 1000
Article
Publication date: 8 February 2023

Yuan Ma, Hui Tang and Chenglei Wang

This study aims at investigating the heat transfer characteristics of a nonsquare enclosure when hydrodynamic resistance is altered discontinuously along its inner surface…

Abstract

Purpose

This study aims at investigating the heat transfer characteristics of a nonsquare enclosure when hydrodynamic resistance is altered discontinuously along its inner surface. Particularly, it focuses on investigating how several essential factors collaboratively influence the natural convection, including the Rayleigh number (Ra), the aspect ratio (AR), the nanoparticle volume fraction (ϕ) and the locations of changing hydrodynamic resistance.

Design/methodology/approach

To achieve these objectives, an L-shaped enclosure of various AR is adopted, while zero local shear resistance is applied and modeled by stress-free (SF) patches of four distinct arrangements (corresponding to Cases 1–4). The nanofluid is modeled by Buongiorno’s two-phase model. The effects are explored using an in-house numerical framework based on a hybrid lattice Boltzmann-finite difference method with the total variation minimization scheme.

Findings

The results show that when Ra is sufficiently large, i.e. Ra = 105, SF patches can generally enhance the heat transfer performance regardless of other factors. However, the ways of achieving those enhancements are different, which mainly depend on the arrangement of the SF patches and AR but are nearly independent of ϕ. The maximum improvement of heat transfer can be achieved in Case 3 with AR = 0.6, Ra = 105 and ϕ = 0.04, where the averaged Nusselt number is enhanced by 8.89%.

Originality/value

This study presents a new scenario where the SF patches of various arrangements are applied to enhance the nanofluid natural convection of a nonsquared enclosure, and it reveals how the improvement is achieved and cooperatively affected by several important factors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1990

Embraer‐Empresa Brasileira de Aeronáutica S.A. recently run for the first time the two 1,300 SHP Garrett TPF351–20 engines installed on the first CBA‐123 prototype.

Abstract

Embraer‐Empresa Brasileira de Aeronáutica S.A. recently run for the first time the two 1,300 SHP Garrett TPF351–20 engines installed on the first CBA‐123 prototype.

Details

Aircraft Engineering and Aerospace Technology, vol. 62 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1997

Ge Song, Tor Bjørge, Jens Holen and Bjørn F. Magnussen

Reports that major advances have been achieved on computational simulations of multidimensional fluid flow, heat and mass transfer during the last 20 years. Focuses on the…

Abstract

Reports that major advances have been achieved on computational simulations of multidimensional fluid flow, heat and mass transfer during the last 20 years. Focuses on the numerical prediction of fluid flow, combustion and gas radiation in a combustion chamber of a typical industrial glass‐melting furnace. Carries out the flow simulation in a three‐dimensional calculation domain by using computer models in conjunction with the standard k ‐ ε turbulence model. Tests the predictions of spectral intensity by solving the equation of radiative transfer. Employs the Goody statistical narrow band model with the Curtis‐Godson approximation to calculate radiative properties for inhomogeneous gas mixtures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 2/3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 March 2008

V. Valasamudram, S.S. Mohamed Nazirudeen, P. Chandramohan and K.P. Thenmozhi

The main purpose of this paper is to produce high‐nitrogen martensitic stainless steels (HNMSS) using a conventional induction furnace with better mechanical properties and to…

Abstract

Purpose

The main purpose of this paper is to produce high‐nitrogen martensitic stainless steels (HNMSS) using a conventional induction furnace with better mechanical properties and to improve the properties by thermo‐mechanical treatment (TMT).

Design/methodology/approach

Production of two types of HNMSS alloys with Chromium – 8.22 and 15.84 wt% was carried out using a conventional melting furnace. The theoretical nitrogen solubility of the produced alloys was calculated and compared with the actual nitrogen solubility of the alloys. The produced alloys were subjected to TMT, characterized by hardness measurement, tensile testing micro examinations in the as cast, hardened, TMT treated and TMT hardened and tempered conditions.

Findings

The actual nitrogen solubility achieved in the HNMSS specimens was in agreement with the calculated theoretical nitrogen solubility using thermodynamic relationships. Thermo‐mechanically treated specimens exhibited the break‐up and refinement of the original coarse cast structure by repeated recrystallization as fine grain size in the austenitic condition and reduced proportion of residual deformed δ ferrite. Thermo‐mechanically treated, hardened and tempered specimens showed higher hardness up to 525 VHN, with strength and toughness.

Research limitations/limitations

In the conventional melting process, purging nitrogen into the melt and increasing the percentage of nitrogen is the primary limitation and retaining the same into the solution during thermo‐mechanical treatment is the secondary limitation.

Originality/value

Work on melting of nitrogenated steels using controlled atmospheric conditions with special equipment was carried out earlier. This practice cannot be adopted on a commercial basis, where mass production is the prime requirement. Therefore, the uniqueness of this paper lies in communicating the melting practice of HNMSS using a conventional induction furnace followed by the optimum TMT. This takes the production and TMT of HNMSS into the commercial casting industry for mass production.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 May 2015

Bindi You, Huibo Zhang, Peixiang Wang and Jiang Zhang

– The purpose of this paper is to analyze the effect of the space thermal effect on satellite antenna.

Abstract

Purpose

The purpose of this paper is to analyze the effect of the space thermal effect on satellite antenna.

Design/methodology/approach

In this paper, according to the geometric characteristics of parabolic reflector, the transient temperature field of an element along its thickness direction is built for shell structures using finite element discretization and the quadratic function interpolation, and heat conduction equations are derived based on the theory of the thermo-elastic dynamics. The modeling theory of rigid–flexible coupling system considering thermal effect is extended to the satellite antenna system. Then, the coupling dynamic equations are established including coupling stiffness matrix and thermal loaded undergoing a large overall motion. Finally, an adaptive controller is proposed and the adaptive update laws are designed under the parameter uncertainty.

Findings

The results of dynamic characteristic analysis show that the dynamic thermal loaded coupled with structure deformation induce the unstable vibration and coupled flutter. Further, the coupling effect degrades the antenna pointing accuracy seriously and leads to disturbances on satellite base. The results of the simulation show that the adaptive controller can ensure that antenna pointing closes to the expected trajectory progressively, and it demonstrates that the proposed control scheme is feasible and effective.

Research limitations/implications

The paper considers only the effect of space thermal effect to satellite antenna. Further research could be done on the flexible multibody system by considering joint clearance in the future research.

Originality/value

The conclusions of this paper would be an academic significance and engineering value for the analysis and control of satellite antenna pointing.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 May 1992

BIJAN FARHANIEH and BENGT SUNDÉN

Laminar fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically investigated…

Abstract

Laminar fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically investigated. The governing equations are solved numerically by a finite‐volume method for elliptic flows in complex geometries using colocated variables and Cartesian velocity components. The results were obtained for a uniform wall temperature for two inclination angles and three duct aspect ratios (H/L) and for Reynolds number ranging from 30 to 1200. The plot of the velocity vectors show a complex flow pattern. Unexpected high enhancement of the average Nusselt number was observed at low Reynolds number for H/L = ½ and ⅓. A moderate increase in Nusselt number was obtained as Reynolds number was increased further.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 1962

A.C. Walshaw

There is much confusion and misunderstanding among students regarding the meaning and use of the word ‘heat’ in the subject of heat engines and applied thermo‐dynamics, and much…

Abstract

There is much confusion and misunderstanding among students regarding the meaning and use of the word ‘heat’ in the subject of heat engines and applied thermo‐dynamics, and much argument among teachers as revealed by Mr Helsdon in his article published in your issue of August 1961. The points of difficulty need to be pursued from the point of view of introducing students to the first law (Q = δE + W or σQ = σE + σW) which involves, and distinguishes between, the funda‐mental concepts of work, heat and energy.

Details

Education + Training, vol. 4 no. 7
Type: Research Article
ISSN: 0040-0912

Article
Publication date: 1 January 1959

On Thursday, October 9, 1958, a new aero‐thermo‐dynamics laboratory in the mechanical engineering wing of the R.A.F. Technical College at Henlow was formally opened by Sir William…

Abstract

On Thursday, October 9, 1958, a new aero‐thermo‐dynamics laboratory in the mechanical engineering wing of the R.A.F. Technical College at Henlow was formally opened by Sir William Farren, Technical Director of A. V. Roc & Co. Ltd.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1972

J. Peter Greaves PhD

What's in a name? What we're doing is Estimating Energy. And every school‐boy knows at least two things about energy: that it is conserved, and that it is interconvertible. The…

Abstract

What's in a name? What we're doing is Estimating Energy. And every school‐boy knows at least two things about energy: that it is conserved, and that it is interconvertible. The first law of thermo‐dynamics, as enunciated by Flanders and Swann, sets this out very plainly: ‘Heat is Work and Work is Heat’.

Details

Nutrition & Food Science, vol. 72 no. 3
Type: Research Article
ISSN: 0034-6659

Article
Publication date: 1 January 1993

BIJAN FARHANIEH and BENGT SUNDEN

Turbulent fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically…

Abstract

Turbulent fully developed periodic heat transfer and fluid flow characteristics in corrugated two‐dimensional ducts with constant cross‐sectional area are numerically investigated. The governing equations are solved numerically by a finite‐volume method for elliptic flows in complex geometries using collocated variables and Cartesian velocity components. Two different turbulence models (the second moment closure and the k—ε) for approximation of the Reynolds stresses are applied. The performance of the models were assessed by comparing the results with experimental data. The results show the advantages of the stress closure model compared to the k—ε model. The overall Nusselt number and the pressure drop ratio results are obtained for the boundary condition of a uniform wall temperature for two inclination angles ø and two duct aspect ratios (H/L) and for Reynolds number ranging from around 3000 to 35,000. The overall Nusselt number predicted by the k—ε model is upto 25% higher than the values predicted by the second moment closure. The plots of the velocity vectors show a complex flow pattern. The mechanisms of heat transfer are explained by the flow phenomena separation, deflection, recirculation, and reattachment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000