Search results

1 – 8 of 8
To view the access options for this content please click here
Article
Publication date: 6 July 2019

Elzbieta Fornalik-Wajs, Aleksandra Roszko, Janusz Donizak and Anna Kraszewska

Nanofluids’ properties made them interesting for various areas like engineering, medicine or cosmetology. Discussed here, research pertains to specific problem of heat…

Abstract

Purpose

Nanofluids’ properties made them interesting for various areas like engineering, medicine or cosmetology. Discussed here, research pertains to specific problem of heat transfer enhancement with application of the magnetic field. The main idea was to transfer high heat rates with utilization of nanofluids including metallic non-ferrous particles. The expectation was based on changed nanofluid properties. However, the results of experimental analysis did not meet it. The heat transfer effect was smaller than in the case of base fluid. The only way to understand the process was to involve the computational fluid dynamics, which could help to clarify this issue. The purpose of this research is deep understanding of the external magnetic field effect on the nanofluids heat transfer.

Design/methodology/approach

In presented experimental and numerical studies, the water and silver nanofluids were considered. From the numerical point of view, three approaches to model the nanofluid in the strong magnetic field were used: single-phase Euler, Euler–Euler and Euler–Lagrange. In two-phase approach, the momentum transfer equations for individual phases were coupled through the interphase momentum transfer term expressing the volume force exerted by one phase on the second one.

Findings

Therefore, the results of numerical simulation predicted decrease of convection heat transfer for nanofluid with respect to pure water, which agreed with the experimental results. The experimental and numerical results are in good agreement with each other, which confirms the right choice of two-phase approach in analysis of nanofluid thermo-magnetic convection.

Originality/value

The Euler–Lagrange exhibit the best matching with the experimental results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 2013

Suvash C. Saha

The purpose of this paper is to numerically study thermo‐magnetic convection and heat transfer of paramagnetic fluid placed in a micro‐gravity condition (g≈0) and under a…

Abstract

Purpose

The purpose of this paper is to numerically study thermo‐magnetic convection and heat transfer of paramagnetic fluid placed in a micro‐gravity condition (g≈0) and under a uniform vertical gradient magnetic field in an open square cavity with three cold sidewalls.

Design/methodology/approach

This magnetic force is proportional to the magnetic susceptibility and the gradient of the square of the magnetic induction. The magnetic susceptibility is inversely proportional to the absolute temperature based on Curie's law. Thermal convection of a paramagnetic fluid can therefore take place even in a zero‐gravity environment as a direct consequence of temperature differences occurring within the fluid due to a constant internal heat generation placed within a magnetic field gradient.

Findings

Effects of magnetic Rayleigh number, γRa, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and isotherms as well as on the heat absorption are presented graphically. It is found that the heat transfer rate is suppressed in increased of the magnetic Rayleigh number and the paramagnetic fluid parameter for the present investigation.

Originality/value

It is possible to control the buoyancy force by using the super conducting magnet. To the best knowledge of the author no literature related to magnetic convection for this configuration is available.

Details

Engineering Computations, vol. 30 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 2003

Ching‐Yao Chen and Chi‐Yuan Liao

Displacements of a miscible magnetic layer in a capillary tube under a moving ring‐shaped magnet are studied numerically. The magnet is adjusted dynamically to maintain a…

Abstract

Displacements of a miscible magnetic layer in a capillary tube under a moving ring‐shaped magnet are studied numerically. The magnet is adjusted dynamically to maintain a constant distance from the front mixing interface on the centerline. Control parameters, such as magnetic strength, effective viscosity variation due to magnetization, diffusion and the position of the magnet, are analyzed systematically. Motion of the magnetic layer is evaluated by two quantitative measurements, i.e. movement of center of gravity and spread of layer width. In general, the moving speed of the center of gravity depends only slightly on the magnetic strength, and is found slower at a higher viscosity ratio and a closer placement to the front interface as well if the magnet is placed amid the layer. A weaker spread occurs in situations of stronger magnetic strength, lower viscosity parameters and also placements near the rear interface. A multi‐front finger results if the magnet is positioned ahead of the front interface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 7 August 2020

Fateh Mebarek-Oudina, R. Bessaih, B. Mahanthesh, A.J. Chamkha and J. Raza

Metal-cooled reactors generally use molten metals such as sodium, potassium or a combination of sodium and potassium because of their excellent heat transfer properties so…

Abstract

Purpose

Metal-cooled reactors generally use molten metals such as sodium, potassium or a combination of sodium and potassium because of their excellent heat transfer properties so that the reactor can operate at much lower pressures and higher temperatures. The purpose of this paper is to investigate the stability of natural convection in an inclined ring filled with molten potassium under the influence of a radial magnetism.

Design/methodology/approach

A numerical simulation of electrically conductive fluid natural convection stability is performed on an inclined cylindrical annulus under the influence of a radial magnetism. The upper and lower walls are adiabatic, while the internal and external cylinders are kept at even temperatures. The equations governing this fluid system are solved numerically using finite volume method. The SIMPLER algorithm is used for pressure-speed coupling in the momentum equation.

Findings

Numerical results for various effective parameters that solve the problem in the initial oscillatory state are discussed in terms of isobars, isotherms and flow lines in the annulus for a wide range of Hartmann numbers (0 ≤ Ha ≤ 80), inclination angles (0 ≤ γ ≤ 90°) and radii ratios λ ≤ 6. The dependency stability diagrams between complicated situations with the critical value of the Rayleigh number RaCr and the corresponding frequency FrCr are established on the basis of the numeric data of this investigation. The angle of inclination and the radii ratio of the annulus have a significant effect on the stabilization of the magneto-convective flux and show that the best stabilization of the natural oscillatory convection is obtained by the intensity of the strongest magnetic field, the high radii ratio and inclination of the annulus at γ = 30°.

Practical implications

This numerical model is selected for its various applications in technology and industry.

Originality/value

To the best of the authors’ knowledge, the influence of the inclination of the cylindrical annulus (ring), with various radii ratio, on natural oscillatory convection under a radial magnetism has never been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 12 June 2017

Meysam Amini, Esmaeil GhasemiKafrudi, Mohammad Reza Habibi, Azin Ahmadi and Akram HosseinNia

Due to the extensive industrial applications of stagnation flow problems, the present work aims to investigate the magnetohydrodynamics (MHD) flow and heat transfer of a…

Abstract

Purpose

Due to the extensive industrial applications of stagnation flow problems, the present work aims to investigate the magnetohydrodynamics (MHD) flow and heat transfer of a magnetite nanofluid (here Fe3O4–water nanofluid) impinging a flat porous plate under the effects of a non-uniform magnetic field and chemical reaction with variable reaction rate.

Design/methodology/approach

Similarity transformations are applied to reduce the governing partial differential equations with boundary conditions into a system of ordinary differential equations over a semi-infinite domain. The modified fourth-order Runge–Kutta method with the shooting technique which is developed for unbounded domains is conducted to give approximate solutions of the problem, which are then verified by results of other researchers, showing very good agreements.

Findings

The effects of the volume fraction of nanoparticles, permeability, magnetic field, chemical reaction and Schmidt number on velocity, temperature and concentration fields are examined and graphically illustrated. It was found that fluid velocity and temperature fields are affected strongly by the types of nanoparticles. Moreover, magnetic field and radiation have strong effects on velocity and temperature fields, fluid velocity increases and thickness of the velocity boundary layer decreases as magnetic parameter M increases. The results also showed that the thickness of the concentration boundary layer decreases with an increase in the Schmidt number, as well as an increase in the chemical reaction coefficient.

Research limitations/implications

The thermophysical properties of the magnetite nanofluid (Fe3O4–water nanofluid) in different conditions should be checked.

Practical implications

Stagnation flow of viscous fluid is important due to its vast industrial applications, such as the flows over the tips of rockets, aircrafts, submarines and oil ships. Moreover, nanofluid, a liquid containing a dispersion of sub-micronic solid particles (nanoparticles) with typical length of the order of 1-50 nm, showed abnormal convective heat transfer enhancement, which is remarkable.

Originality/value

The major novelty of the present work corresponds to utilization of a magnetite nanofluid (Fe3O4–water nanofluid) in a stagnation flow influenced by chemical reaction and magnetic field. It should be noted that in addition to a variable chemical reaction, the permeability is non-uniform, while the imposed magnetic field also varies along the sheet. These, all, make the present work rather original.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 10 April 2007

G.B. Kumbhar, S.V. Kulkarni, R. Escarela‐Perez and E. Campero‐Littlewood

This paper aims to give a perspective about the variety of techniques which are available and are being further developed in the area of coupled field formulations, with…

Abstract

Purpose

This paper aims to give a perspective about the variety of techniques which are available and are being further developed in the area of coupled field formulations, with selective bibliography and practical examples, to help postgraduate students, researchers and designers working in design or analysis of electrical machinery.

Design/methodology/approach

This paper reviews the recent trends in coupled field formulations. The use of these formulations for designing and non‐destructive testing of electrical machinery is described, followed by their classifications, solutions and applications. Their advantages and shortcomings are discussed.

Findings

The paper gives an overview of research, development and applications of coupled field formulations for electrical machinery based on more than 160 references. All landmark papers are classified. Practical engineering case studies are given which illustrate wide applicability of coupled field formulations.

Research limitations/implications

Problems which continue to pose challenges to researchers are enumerated and the advantages of using the coupled‐field formulation are pointed out.

Practical implications

This paper gives a detailed description of the application of the coupled field formulation method to the analysis of problems that are present in different electrical machines. Examples of analysis of generators and transformers with this formulation are presented. The application examples give guidelines for its use in other analyses.

Originality/value

The coupled‐field formulation is used in the analysis of rotational machines and transformers where reference data are available and comparisons with other methods are performed and the advantages are justified. This paper serves as a guide for the ongoing research on coupled problems in electrical machinery.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 7 October 2013

Rubén Ansola, Estrella Veguería, Javier Canales and Cristina Alonso

– This paper aims to show an evolutionary topology optimization procedure for the design of compliant electro-thermal mechanisms.

Abstract

Purpose

This paper aims to show an evolutionary topology optimization procedure for the design of compliant electro-thermal mechanisms.

Design/methodology/approach

The adopted methodology is based in the evolutionary structural optimization (ESO) method. This approach has been successfully applied by this group for compliant mechanisms optimization under directly applied input loads and simple thermal loads. This work proposes an extension of this procedure, based on an additive version of the method, to solve the more complicated case of electro-thermal actuators optimum design, based on Joule's resistive heating.

Findings

Examples solved for the design of plane compliant mechanisms are presented to check the validity of this technique. The designs obtained are compared favorably with results obtained by other authors to illustrate and validate the method, showing the viability of this technique for the optimization of compliant mechanisms under electro-thermal actuation.

Research limitations/implications

This investigation is based on and additive version of the evolutionary method. Since this approach does not have the capability to remove material it could be combined with the classic element rejection evolutionary method to overcome these deficiencies, developing an improved bi-directional algorithm, which should be analyzed and applied for these types of designs in future works.

Practical implications

Electro-thermal actuators have widespread use in MicroElectroMechanical Systems applications. Since these elements cannot be manufactured using typical assembly processes compliant mechanisms optimization play a crucial role for their successful design. The proposed methodology could help engineers to rapidly conceive complex and efficient actuators.

Social implications

The topology optimization procedure developed in this paper enables systematic design of these devices, which can result in a save of manufacturing time and cost.

Originality/value

Most applications of the ESO method have considered maximum stiffness structure design, and even if it has been successfully applied to some other optimum material distribution problems, electro-thermal actuators design has not been considered yet. This paper shows that this methodology could be useful also in the design of electro-thermal compliant mechanisms, and provides engineers with a very simple and practical alternative design tool.

Details

Engineering Computations, vol. 30 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 24 August 2010

Rubén Ansola, Estrella Vegueria and Javier Canales

The purpose of this paper is to describe an element addition strategy for topology optimization of thermally actuated compliant mechanisms under uniform temperature fields.

Abstract

Purpose

The purpose of this paper is to describe an element addition strategy for topology optimization of thermally actuated compliant mechanisms under uniform temperature fields.

Design/methodology/approach

The proposed procedure is based on the evolutionary structural optimization (ESO) method. In previous works, this group of authors has successfully applied the ESO method for compliant mechanism optimization under directly applied input loads. The present paper progresses on this work line developing an extension of this procedure, based on an additive version of the method, to approach the more complicated case of thermal actuators.

Findings

The adopted method has been tested in several numerical applications and benchmark examples to illustrate and validate the approach, and designs obtained with this method are compared favorably with the analytical solutions and results derived by other authors using different optimization methods, showing the viability of this technique for uniformly heated actuators optimization.

Research limitations/implications

As a simple initial approach, this research considers only uniform heating of the system, while many thermal actuators are heated nonuniformly. Future works will be based on electrothermal actuation, and nonuniform Joule heating will be considered as well, which might lead to more elegant and efficient solutions.

Practical implications

Compliant micromechanisms that are responsible for movement play a crucial role in microelectromechanical systems (MEMS) design, which cannot be manufactured using typical assembly processes and may not make use of traditional hinges or bearings. The topology optimization method described in this paper enables the systematic design of these devices, which can result in reduced conception time and manufacturing cost.

Originality/value

The ESO method has been successfully applied to several optimum material distribution problems, but not for thermal compliant mechanisms. Even if most applications of this method have been oriented for maximum stiffness structure design, this paper shows that this computation method may be also useful in the design of thermal compliant mechanisms and provides engineers with a very simple and practical alternative design tool.

Details

Engineering Computations, vol. 27 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 8 of 8