Search results

1 – 10 of over 1000
Article
Publication date: 9 June 2022

Thong Duc Hong, Quan Thien Phan Nghiem, Binh Trong Nguyen and Tinh Van Mai

The purpose of this paper is to investigate the effect of different guide fins structures (i.e. single-layer and double-layer guide fins) on the exhaust flow and thermal uniformity

Abstract

Purpose

The purpose of this paper is to investigate the effect of different guide fins structures (i.e. single-layer and double-layer guide fins) on the exhaust flow and thermal uniformity of the motorcycle exhaust thermoelectric generator.

Design/methodology/approach

One single-layer guide fins structure and three double-layer guide fins structures are numerically investigated in terms of exhaust flow uniformity with different exhaust properties. Then, the double-layer guide fins structure achieving the highest flow uniformity is fabricated and experimentally investigated on a motorcycle at different engine speeds together with the single-layer guide fins structure to evaluate the thermal uniformity.

Findings

The double-layer guide fins structure obtains a better flow uniformity and thermal uniformity compared to the single-layer structure. Among surveyed structures, the double-layer structure with three closed V-shape guide fins achieves the highest flow uniformity. This structure also improves the thermal uniformity from 3.0 to 90.1% in comparison with the single-layer structure in experiments.

Originality/value

In this paper, the double-layer guide fins structures are derived from the improvement of the single-layer guide fins structure. The fluid flow uniformity index is applied as a measure for assessing the exhaust flow uniformity. The enhancement of thermal uniformity of the double-layer guide fins structure is expected to increase the longevity and performance of the motorcycle exhaust thermoelectric generator.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 April 2016

Chun Sean Lau, C.Y. Khor, D. Soares, J.C. Teixeira and M.Z. Abdullah

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review…

1038

Abstract

Purpose

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed.

Design/methodology/approach

Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process.

Findings

With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed.

Practical implications

This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process.

Originality/value

The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 December 2023

Jyoti Ranjan Mohapatra and Manoj Kumar Moharana

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity

Abstract

Purpose

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity analysis are performed and compared with the traditional serpentine design. The substrate thickness and its thermal conductivity are varied to analyse the effect of axial-back conduction due to the conjugate nature of heat transfer.

Design/methodology/approach

The traditional serpentine minichannel is modified into five new fragmented designs with two inlets and two outlets. A three-dimensional numerical model involving the effect of conjugate heat transfer with a single-phase laminar fluid flow subjected to constant heat flux is solved using a finite volume-based computational fluid dynamics solver.

Findings

The minimum and maximum temperature differences are observed for the two branch fragmented flow designs. The two-branch and middle channel fragmented design shows better temperature uniformity over other designs while the three-branch fragmented designs exhibited better hydrodynamic performance.

Practical implications

MCPs could be used as an indirect liquid cooling method for battery thermal management of pouch and prismatic cells. Coupling the modified cold plates with a battery module and investigating the effect of different battery parameters and environmental effects in a transient state are the prospects for further research.

Originality/value

The study involves several aspects of evaluation for a conclusive decision on optimum channel design by analysing the performance plot between the temperature uniformity index, average base temperature and overall thermal performance. The new fragmented channels are designed in a way to facilitate the fluid towards the outlet in the minimum possible path thereby reducing the pressure drop, also maximizing the heat transfer and temperature uniformity from the substrate due to two inlets and a reversed-flow pattern. Simplified minichannel designs are proposed in this study for practical deployment and ease of manufacturability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2015

Yawei Wang, Hao Gao, Zhuyong Li, Yang Ping, Zhijian Jin and Zhiyong Hong

– The purpose of this paper is to analyse and improve the temperature uniformity of aluminium billets heated by superconducting DC induction heaters.

Abstract

Purpose

The purpose of this paper is to analyse and improve the temperature uniformity of aluminium billets heated by superconducting DC induction heaters.

Design/methodology/approach

A 3D electromagnetic model coupled with a heat transfer model is developed to calculate the heating process of the billets which are rotated in uniform transverse DC magnetic field. A laboratory-scale DC induction heater prototype has been built to validate the model. The results from simulation and measurement have a good agreement. The model is used to investigate the factors affecting the temperature uniformity of aluminium billets.

Findings

The results from simulation show that lower rotation speeds always mean better temperature uniformity along the radial direction, due to the increase in power penetration. However, the situation is very different for the temperature distribution along the axial direction. When the rotation speed is low, the temperature at the ends is lower than other parts. The situation reverses as the rotation speeds increase. This phenomenon is referred to as the “ending effect” in this paper.

Research limitations/implications

Because of the ending effect, a lower rotation speed does not always result in better overall temperature uniformity, especially for billets of smaller sizes.

Practical implications

There is an optimal rotation speed that yields the best overall temperature uniformity. Lower rotation speeds are not always preferred. The results and numerical model developed are very useful in the design of a superconducting DC induction heater.

Originality/value

The temperature uniformity of aluminium billets heated by DC induction heaters is investigated and optimized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 October 2014

Paolo Di Barba, Michele Forzan and Elisabetta Sieni

The purpose of this paper is to investigate a bi-objective optimization problem characterized by coupled field analysis. The optimal design of a pancake inductor for the…

Abstract

Purpose

The purpose of this paper is to investigate a bi-objective optimization problem characterized by coupled field analysis. The optimal design of a pancake inductor for the controlled heating of a graphite disk is considered as the benchmark problem. The case study is related to the design of industrial applications of the induction heating of graphite disk.

Design/methodology/approach

The expected goal of the optimization process is twofold: to improve temperature uniformity in the disk and also electrical efficiency of the inductor. The solution of the relevant bi-objective optimization problem is based on multiphysics field analysis. Specifically, the direct problem is solved as a magnetic and thermal coupled problem by means of finite elements; a mesh-inspired definition of thermal uniformity is proposed. In turn, the Pareto front trading off electrical efficiency and thermal uniformity is identified exploiting evolutionary computing.

Findings

By varying the problem targets, different Pareto fronts are identified trading off thermal uniformity and electrical efficiency of the induction-heating device.

Practical implications

These results suggest how to improve the design of this kind of device for the epitaxial growth of silicon wafer; the advantage of using a magnetic concentrator placed close to the inductor axis is pointed out.

Originality/value

The coupling of a multiphysics direct problem with a multiobjective inverse problem is presented as a benchmark problem and accordingly solved. The benchmark provides a simple analysis problem that allows testing various optimization algorithms in a comparative way.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 June 2019

Debayan Das, Leo Lukose and Tanmay Basak

The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles…

Abstract

Purpose

The purpose of the paper is to study natural convection within porous square and triangular geometries (design 1: regular isosceles triangle, design 2: inverted isosceles triangle) subjected to discrete heating with various locations of double heaters along the vertical (square) or inclined (triangular) arms.

Design/methodology/approach

Galerkin finite element method is used to solve the governing equations for a wide range of modified Darcy number, Dam = 10−5–10−2 with various fluid saturated porous media, Prm = 0.015 and 7.2 at a modified Rayleigh number, Ram = 106 involving the strategic placement of double heaters along the vertical or inclined arms (types 1-3). Adaptive mesh refinement is implemented based on the lengths of discrete heaters. Finite element based heat flow visualization via heatlines has been adopted to study heat distribution at various portions.

Findings

The strategic positioning of the double heaters (types 1-3) and the convective heatline vortices depict significant overall temperature elevation at both Dam = 10−4 and 10−2 compared to type 0 (single heater at each vertical or inclined arm). Types 2 and 3 are found to promote higher temperature uniformity and greater overall temperature elevation at Dam = 10−2. Overall, the triangular design 2 geometry is also found to be optimal in achieving greater temperature elevation for the porous media saturated with various fluids (Prm).

Practical implications

Multiple heaters (at each side [left or right] wall) result in enhanced temperature elevation compared to the single heater (at each side [left or right] wall). The results of the current work may be useful for the material processing, thermal storage and solar heating applications.

Originality/value

The heatline approach is used to visualize the heat flow involving double heaters along the side (left or right) arms (square and triangular geometries) during natural convection involving porous media. The heatlines depict the trajectories of heat flow that are essential for thermal management involving larger thermal elevation. The mixing cup or bulk average temperature values are obtained for all types of heating (types 0-3) involving all geometries, and overall temperature elevation is examined based on higher mixing cup temperature values.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2022

Yanjun Zhang, Shuangfeng Wang and Zhuming Liu

The purpose of this study is to conduct research on a new kind of division microchannel heat sink (D-MCHS), which can distribute cooling water along the channel-length direction…

Abstract

Purpose

The purpose of this study is to conduct research on a new kind of division microchannel heat sink (D-MCHS), which can distribute cooling water along the channel-length direction. First, the pressure drops in the D-MCHS with different division region numbers were compared. Then, the cooling performance of the D-MCHS with different division region numbers was also comparatively investigated. Finally, the temperature distribution on the bottom surface of the D-MCHS was analyzed.

Design/methodology/approach

First, experiments were conducted to investigate the numerical calculation method. Then, a three-dimensional steady, single-phase, laminar flow and solid-fluid conjugate heat transfer numerical model was used to research the flow and heat transfer characteristics in microchannels.

Findings

The pressure drop in the D-MCHS could be reduced by increasing the number of divided flow regions along the channel-length direction. The bottom average temperature of the D-MCHS could be simultaneously affected by the number of divided flow regions and the water flow rate. The thermal uniformity performance of the D-MCHS could be improved by increasing the number of division flow regions. The number of low-temperature and high-temperature areas on the bottom surface of the D-MCHS is corresponding to the division flow region number.

Originality/value

The D-MCHS exhibited a positive effect on the pressure drop decrease and thermal uniformity improvement. It not only keeps the electronic module working in a secure temperature environment but also consumes less pump power for a lower pressure drop.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 July 2020

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

This study aims to numerically analyse the impact of an inclined magnetic field and Joule heating on the conjugate heat transfer because of the mixed convection of an Al2O3–water…

Abstract

Purpose

This study aims to numerically analyse the impact of an inclined magnetic field and Joule heating on the conjugate heat transfer because of the mixed convection of an Al2O3–water nanofluid in a thick wall enclosure.

Design/methodology/approach

A horizontal temperature gradient together with the shear-driven Flow creates the mixed convection inside the enclosure. The nonhomogeneous model, in which the nanoparticles have a slip velocity because of thermophoresis and Brownian diffusion, is adopted in the present study. The thermal performance is evaluated by determining the entropy generation, which includes the contribution because of magnetic field. A control volume method over a staggered grid arrangement is adopted to compute the governing equations.

Findings

The Lorentz force created by the applied magnetic field has an adverse effect on the flow and thermal field, and consequently, the heat transfer and entropy generation attenuate because of the presence of magnetic force. The Joule heating enhances the fluid temperature but attenuates the heat transfer. The impact of the magnetic field diminishes as the angle of inclination of the magnetic field is increased, and it manifests as the volume fraction of nanoparticles is increased. Addition of nanoparticles enhances both the heat transfer and entropy generation compared to the clear fluid with enhancement in entropy generation higher than the rate by which the heat transfer augments. The average Bejan number and mixing-cup temperature are evaluated to analyse the thermodynamic characteristics of the nanofluid.

Originality/value

This literature survey suggests that the impact of an inclined magnetic field and Joule heating on conjugate heat transfer based on a two-phase model has not been addressed before. The impact of the relative slip velocity of nanoparticles diminishes as the magnetic field becomes stronger.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1080

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000