Search results

1 – 10 of over 2000
Article
Publication date: 15 May 2009

Baodong Shaoi, Lifeng Wang, Jianyun Li and Zhaowei Sun

The purpose of this paper is to optimize the configuration sizes of micro‐channel cooling heat sink using the thermal resistance network model. The optimized micro‐channel heat…

1168

Abstract

Purpose

The purpose of this paper is to optimize the configuration sizes of micro‐channel cooling heat sink using the thermal resistance network model. The optimized micro‐channel heat sink is simulated by computational fluid dynamics method, and the total thermal resistance is calculated to compare with that of thermal resistance network model.

Design/methodology/approach

Taking the thermal resistance and the pressure drop as goal functions, a multi‐objective optimization model was proposed for the micro‐channel cooling heat sink based on the thermal resistance net work model. The Sequential Quadratic Programming procedure was used to do the optimization design of the structure size of the micro‐channel. The optimized micro‐channel heat sink was numerically simulated by computational fluid dynamics (CFD) software.

Findings

For the heat sink to cool a chip with the sizes of L × W = 2.5 mm × 2.5 mm and the power of 8 W, the optimized width and height of the micro‐channel are 154 μm and 1,000 μm, respectively, and its corresponding total thermal resistance is 8.255 K/W. According to the simulation results, the total thermal resistance of whole micro‐channel heat sink Rtotal is 7.596 K/W, which agrees well with the analysis result of thermal resistance network model.

Research limitations/implications

The convection heat transfer coefficient is calculated approximatively here for convenience, and that may induce some errors. Originality/value –The maximum difference in temperature of the optimized micro‐channel cooling heat sink is 59.064 K, which may satisfy the requirement for removal of high heat flux in new‐generation chips.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2005

K. Jeevan, G.A. Quadir, K.N. Seetharamu, I.A. Azid and Z.A. Zainal

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Abstract

Purpose

To determine the optimal dimensions for a stacked micro‐channel using the genetic algorithms (GAs) under different flow constraints.

Design/methodology/approach

GA is used as an optimization tool for optimizing the thermal resistance of a stacked micro‐channel under different flow constraints obtained by using the one dimensional (1D) and two dimensional (2D) finite element methods (FEM) and by thermal resistance network model as well (proposed by earlier researcher). The 2D FEM is used to study the effect of two dimensional heat conduction in the micro‐channel material. Some parametric studies are carried out to determine the resulting performance of the stacked micro‐channel. Different number of layers of the stacked micro‐channel is also investigated to study its effect on the minimum thermal resistance.

Findings

The results obtained from the 1D FEM analysis compare well with those obtained from the thermal resistance network model. However, the 2D FEM analysis results in lower thermal resistance and, therefore, the importance of considering the conduction in two dimensions in the micro‐channel is highlighted.

Research limitations/implication

The analysis is valid for constant properties fluid and for steady‐state conditions. The top‐most surfaces as well as the side surfaces of the micro‐channel are considered adiabatic.

Practical implications

The method is very useful for practical design of micro‐channel heat‐sinks.

Originality/value

FEM analyses of stacked micro‐channel can be easily implemented in the optimization procedure for obtaining the dimensions of the stacked micro‐channel heat‐sinks for minimum thermal resistance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2016

Mei-Ling Wu and Jia-Shen Lan

This paper aims to develop the thermal resistance network model based on the heat dissipation paths from the multi-die stack to the ambient and takes into account the composite…

Abstract

Purpose

This paper aims to develop the thermal resistance network model based on the heat dissipation paths from the multi-die stack to the ambient and takes into account the composite effects of the thermal spreading resistance and one-dimensional (1D) thermal resistance. The thermal spreading resistance comprises majority of the thermal resistance when heat flows in the horizontal direction of a large plate. The present study investigates the role of determining the temperature increase compared to the thermal resistances intrinsic to the 3D technology, including the thermal resistances of bonding layers and through silicon vias (TSVs).

Design/methodology/approach

This paper presents an effective method that can be applied to predict the thermal failure of the heat source of silicon chips. An analytical model of the 3D integrated circuit (IC) package, including the full structure, is developed to estimate the temperature of stacked chips. Two fundamental theories are used in this paper – Laplace’s equation and the thermal resistance network – to calculate 1D thermal resistance and thermal spreading resistance on the 3D IC package.

Findings

This paper provides a comprehensive model of the 3D IC package, thus improving the existing analytical approach for predicting the temperature of the heat source on the chip for the 3D IC package.

Research limitations/implications

Based on the aforementioned shortcomings, the present study aims to determine if the use of an analytical resistance model would improve the handling of a temperature increase on the silicon chips in a 3D IC package. To achieve this aim, a simple rectangular plate is utilized to analyze the temperature of the heat source when applying the heat flux on the area of the heat source. Next, the analytical model of a pure plate is applied to the 3D IC package, and the temperature increase is analyzed and discussed.

Practical implications

The main contribution of this paper is the use of a simple concept and a theoretical resistance network model to improve the current understanding of thermal failure by redesigning the parameters or materials of a printed circuit board.

Social implications

In this paper, an analytical model of a 3D IC package was proposed based on the calculation of the thermal resistance and the analysis of the network model.

Originality/value

The aim of this work was to estimate the mean temperature of the silicon chips and understand the heat convection paths in the 3D IC package. The results reveal these phenomena of the complete structure, including TSV and bump, and highlight the different thermal conductivities of the materials used in creating the 3D IC packages.

Article
Publication date: 19 April 2011

Shao Baodong, Wang Lifeng, Li Jianyun and Cheng Heming

The purpose of this paper is to show how, with a view to the shortcomings of traditional optimization methods, a multi‐objective optimization concerning the structure sizes of…

Abstract

Purpose

The purpose of this paper is to show how, with a view to the shortcomings of traditional optimization methods, a multi‐objective optimization concerning the structure sizes of micro‐channel heat sink is performed by adaptive genetic algorithm. The optimized micro‐channel heat sink is simulated by computational fluid dynamics (CFD) method, and the total thermal resistance is calculated to compare with that of thermal resistance network model.

Design/methodology/approach

Taking the thermal resistance and the pressure drop as goal functions, a multi‐objective optimization model was proposed for the micro‐channel cooling heat sink based on the thermal resistance network model. The coupled solution of the flow and heat transfer is considered in the optimization process, and the aim of the procedure is to find the geometry most favorable to simultaneously maximize heat transfer while obtaining a minimum pressure drop. The optimized micro‐channel heat sink was numerically simulated by CFD software.

Findings

The results of optimization show that the base convection thermal resistance contributes to maximum the total thermal resistance, and base conduction thermal resistance contributes to least. The width of optimized micro‐channel and fin are 197 and 50 μm, respectively, and the corresponding total thermal resistance of the whole micro‐channel heat sink is 0.838 K/W, which agrees well with the analysis result of thermal resistance network model.

Research limitations/implications

The convection heat transfer coefficient is calculated approximately here for convenience, and that may induce some errors.

Originality/value

The maximum difference in temperature of the optimized micro‐channel cooling heat sink is 84.706 K, which may satisfy the requirement for removal of high heat flux in new‐generation chips. The numerical simulation results are also presented, and the results of numerical simulation show that the optimized micro‐channel heat sink can enhance thermal transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2010

Dave Staton and Mircea Popescu

Thermal analysis is an important design aspect and becoming a more important component of the electric motor design process due to the push for reduced weights and costs and…

Abstract

Purpose

Thermal analysis is an important design aspect and becoming a more important component of the electric motor design process due to the push for reduced weights and costs and increased efficiency. The purpose of this paper is to demonstrate that the accuracy of analytical thermal models depends on the accuracy of the thermal resistance computation and on the number of nodes in the equivalent thermal circuit.

Design/methodology/approach

In this paper, several thermal analytical models with different numbers of nodes are compared against with each other and with experimental data.

Findings

It is demonstrated that the more sophisticated and detailed model having a larger number of nodes can be used to calibrate the simpler but faster models with less nodes. The models are all for the same range of small totally enclosed non‐ventilated induction motors.

Originality/value

This paper shows that simplified and/or detailed analytical thermal models can be successfully used in predicting the temperature rise in small induction motors. The level of detail and accuracy of these models strongly depends on the number of nodes and how the thermal resistances are set up. The calibration process for various reduced nodal model has been successfully described. Once calibrated, the reduced node thermal models give both satisfactory accuracy and allow very fast and robust thermal calculations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2006

N. Aizar Abdul Karim, P.A. Aswatha Narayana and K.N. Seetharamu

To demonstrate thermal modeling technique for a through hole light emitting diode (LED) package using a commercial computational fluid dynamic (CFD) code and to improve its…

1464

Abstract

Purpose

To demonstrate thermal modeling technique for a through hole light emitting diode (LED) package using a commercial computational fluid dynamic (CFD) code and to improve its thermal performance through a series of sensitivity analyses.

Design/methodology/approach

Thermal resistance of the standard through hole LED is calculated using the simulation result. The result is then compared with actual measurement to establish the correct model. Using the validated model, series of sensitivity analyses are carried out through simulation. Taking the most optimum design, a prototype of the improved LED is fabricated and the thermal resistance performance is compared with the simulation result.

Findings

The simulation result of the standard LED is close to actual measurement with 5 percent difference. The thermal resistance of the through hole LED is reduced by changing the leadframe material from mild steel to copper alloy and increasing the leadframe width. Combination of both design changes resulted in thermal resistance reduction of 51 percent.

Originality/value

This paper identified the practicality of using CFD codes in achieving fast and accurate result in thermal modeling of LED package and also offers solutions on reducing the LED thermal resistance.

Details

Microelectronics International, vol. 23 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 May 2016

Sangbeom Cho, Venky Sundaram, Rao Tummala and Yogendra Joshi

The functionality of personal mobile electronics continues to increase, in turn driving the demand for higher logic-to-memory bandwidth. However, the number of inputs/outputs…

265

Abstract

Purpose

The functionality of personal mobile electronics continues to increase, in turn driving the demand for higher logic-to-memory bandwidth. However, the number of inputs/outputs supported by the current packaging technology is limited by the smallest achievable electrical line spacing, and the associated noise performance. Also, a growing trend in mobile systems is for the memory chips to be stacked to address the growing demand for memory bandwidth, which in turn gives rise to heat removal challenges. The glass interposer substrate is a promising packaging technology to address these emerging demands, because of its many advantages over the traditional organic substrate technology. However, glass has a fundamental limitation, namely low thermal conductivity (∼1 W/m K). The purpose of this paper is to quantify the thermal performance of glass interposer-based electronic packages by solving a multi-scale heat transfer problem for an interposer structure. Also, this paper studies the possible improvement in thermal performance by integrating a fluidic heat spreader or vapor chamber within the interposer.

Design/methodology/approach

This paper illustrates the multi-scale modeling approach applied for different components of the interposer, including Through Package Vias (TPVs) and copper traces. For geometrically intricate and repeating structures, such as interconnects and TPVs, the unit cell effective thermal conductivity approach was used. For non-repeating patterns, such as copper traces in redistribution layer, CAD drawing-based thermal resistance network analysis was used. At the end, the thermal performance of vapor chamber integrated within a glass interposer was estimated by using an enhanced effective thermal conductivity, calculated from the published thermal resistance data, in conjunction with the analytical expression for thermal resistance for a given geometry of the vapor chamber.

Findings

The limitations arising from the low thermal conductivity of glass can be addressed by using copper structures and vapor chamber technology.

Originality/value

A few reports can be found on thermal performance of glass interposers. However thermal characteristics of glass interposer with advanced cooling technology have not been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2018

De-xing Zheng, Weifang Chen and Miaomiao Li

Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not…

Abstract

Purpose

Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings.

Design/methodology/approach

Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results.

Findings

The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified.

Originality/value

This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 July 2019

Biao Ma, Liang Yu, Man Chen, He Yan Li and Liang Jie Zheng

This paper aims to investigate the thermal characteristics of the clutch hydraulic system under various oil flow conditions. Increasing the oil flow is one of the most important…

Abstract

Purpose

This paper aims to investigate the thermal characteristics of the clutch hydraulic system under various oil flow conditions. Increasing the oil flow is one of the most important approaches to reduce the clutch temperature. However, the effect of the oil flow on the clutch temperature remains to be explored.

Design/methodology/approach

The thermal resistance network model and the lumped parameter method are used to study the thermal characteristics of the clutch hydraulic system. The predicted temperature variations of the clutch and the oil are compared with experimental data.

Findings

Results demonstrate that the larger the friction power is, the higher the temperatures of the clutch and the oil are. However, the temperature growth rates of the clutch and oil present different trends: the former decreases gradually and the latter increases constantly. Additionally, increasing the oil flow within a certain range gives rise to the decrease of clutch temperature and the increase of oil temperature; nevertheless, their variation trends are gradually weakening. When the oil flow is large enough, it brings a slight effect on the clutch temperature rise.

Originality/value

This paper extends the knowledge into the oil flow supply of the clutch hydraulic system. The conclusions can provide a theoretical guidance for the oil management of the transmission system. Additionally, the thermal resistance network model is also effective and efficient for other hydraulic equipment to predict the temperature variation.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2023

De-Xing Zheng and Dateng Zheng

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

91

Abstract

Purpose

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

Design/methodology/approach

First, the role of lubricant/coolant in bearing temperature was discussed separately, and the gray-box models on the heat convection inside a bearing cavity were also created. Next, the bearing node setting scheme was optimized. Consequently, a novel semi-empirical two-phase flow thermal grid for high-speed angular contact ball bearings was planned. With this model, the thermal network for the selected motored spindle was built, and the numerical solutions for bearing temperature rise were obtained and contrasted with the experimental values for validation. The polynomial interpolation on test data, meanwhile, was also performed to help us observe the temperature change trend. Finally, the simulations based on the current models of bearings were implemented, whose corresponding results were also compared with our research work.

Findings

The validation result indicates that the thermal prediction is more accurate and efficient when the developed semi-empirical oil–air two-phase flow model is employed to assess the thermal change of bearings. Clearly, we provide a more proper model for the thermal assessment of bearing and even spindle heating.

Originality/value

To the best of the authors’ knowledge, this paper introduced the oil–air separation and gray-box model for the first time to describe the heat exchange inside bearing cavities and accordingly presents an efficient semi-empirical oil–air two-phase flow model to evaluate the bearing temperature variation by using thermal network method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0180/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000