Search results

11 – 20 of over 2000
Article
Publication date: 17 June 2021

Fikrat Yusubov

The purpose of this paper is to investigate the influence of binder effect on tribological behavior of brake friction composite materials: a case study of phenolic resin modified…

Abstract

Purpose

The purpose of this paper is to investigate the influence of binder effect on tribological behavior of brake friction composite materials: a case study of phenolic resin modified by N-Methylaniline.

Design/methodology/approach

Four different friction materials have been fabricated by varying modified phenolic resin content. The samples were prepared by the conventional powder metallurgy methods following ball milling, mixing, pre-forming, hot pressing and post-curing processes. Thermogravimetric analysis was used to determination of the degradation mechanism of organic components and study of thermal stability of the samples. A friction test was carried out in dry conditions using a vertical tribometer. Analysis of worn surfaces was performed using a scanning electron microscope.

Findings

The experimental results revealed that the sample containing 25 Wt.% phenolic resin has good mechanical and thermal properties with stable friction characteristics.

Originality/value

This paper presents the effect of N-methylaniline modified phenolic resin on friction composites to improve tribological performance by its thermal properties.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 1963

P.H. MOLYNEUX

THE BENEFIT of lubricants and of additives an “lubricant modifiers” has been known for centuries. For example, animal fat was used to reduce friction and thus squeaking, of Roman…

Abstract

THE BENEFIT of lubricants and of additives an “lubricant modifiers” has been known for centuries. For example, animal fat was used to reduce friction and thus squeaking, of Roman chariot wheels sulphur was employed to aid the machining of iron during the Industrial Revolution, The type of additives which will be discussed in this paper are, however, of more recent origin and are complex chemical compounds which are added in controlled quantities to lubricating fluids to enhance or modify their specific natural properties.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 May 2013

Neuza Jorge and Patrícia Vieira Del Ré

The objective of this study was to evaluate the antioxidant effect of oregano and thyme extracts isolatedly and combinedly applied in soybean oil.

189

Abstract

Purpose

The objective of this study was to evaluate the antioxidant effect of oregano and thyme extracts isolatedly and combinedly applied in soybean oil.

Design/methodology/approach

Soybean oil containing 3,000 mg/kg of oregano and thyme oleoresins and the mixture of both, as well as soybean oil containing TBHQ (50 mg/kg) and soybean oil free of antioxidants, were subjected to accelerated oven test (60°C/10 days). Samples were collected every two days and analyzed as to their peroxide and conjugated diene values.

Findings

The mixture of oleoresins and consequent increase of concentration were as effective as the antioxidant TBHQ.

Practical implications

These studies may prove to be beneficial to the exploitation of natural antioxidant sources for the preservation and/or extension of raw and processed food shelf life. Therefore, they could also be applied in the area of pharmaceuticals for the protection of human life.

Originality/value

This study offers information on the use of natural antioxidants as an alternative to the use of synthetic antioxidants, which might be considered toxic.

Details

Nutrition & Food Science, vol. 43 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 6 August 2019

Onur Çomakli, Mustafa Yazici, Tuba Yetim, Fatih Yetim and Ayhan Celik

This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on…

322

Abstract

Purpose

This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on commercially pure titanium.

Design/methodology/approach

Ceramic thin films (Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite film) were deposited on commercially pure titanium (CP-Ti) substrate. Surface characterization of the uncoated and coated samples was made by structural surveys (scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, tribological and corrosion experiments.

Findings

Results were indicated that sol-gel coatings improved the wear and corrosion resistance of CP-Ti, and the best results were seen at the nanocomposite coating. It may be attributed to its small grain size, high surface hardness and high film thickness.

Originality/value

This study can be a practical reference and offers insight into the influence of nanocomposite ceramic films on the increase of hardness, tribological and corrosion performance. Also, the paper displayed a promising approach to produce Ag2O/ZnO/NiO nanocomposite coating on commercially pure titanium implants for biomedical applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2019

Bingxue Cheng, Haitao Duan, Yongliang Jin, Lei Wei, Jia Dan, Song Chen and Jian Li

This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature…

93

Abstract

Purpose

This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives.

Design/methodology/approach

Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed.

Findings

The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards.

Originality/value

Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 June 2018

Omar Alejandro Valdés-Saucedo, Liliana Judith Vázquez-Rodríguez, Brenda López-Zárate, Lorena Garza-Tovar, Nora Aleyda García-Gómez, Alfredo Artigas, Alberto Monsalve, Javier H. Humberto Ramírez-Ramírez, Francisco Aurelio Pérez-González, Rafael Colás and Nelson Federico Garza-Montes-de-Oca

This paper aims to analyse the surface evolution of pure recycled titanium subjected to isothermal and cyclic oxidation conditions using dry air as oxidant gas. It is important to…

Abstract

Purpose

This paper aims to analyse the surface evolution of pure recycled titanium subjected to isothermal and cyclic oxidation conditions using dry air as oxidant gas. It is important to mention that the cyclic oxidation behaviour of pure titanium is a process that has been barely studied.

Design/methodology/approach

An isothermal and cyclic oxidation reactor was built for these purposes. This installation allows the oxidation of material under the action of any atmosphere and for temperatures up to 1,200°C. For this study, the oxidation behaviour of the material was studied at 850°C and 950°C.

Findings

Oxide growth under isothermal oxidation conditions in air follows a parabolic behaviour with an activation energy of 118 kJ/mol, and the oxide phase formed on the surface of the metal was rutile. The cyclic oxidation of the material indicates that oxide is spalled from the surface following linear behaviours; this phenomenon is controlled by the thermal stresses experienced by the samples during heating and cooling cycles.

Originality/value

The material is obtained from the production of electrolytic copper, and during its reprocessing practices at high temperature, it was thought that it could experience some abnormal oxidation. In addition, given that pure titanium is currently used for biomedical application, some surface degree can be given by means of oxidation and subsequent spallation process situation that is found during the cyclic oxidation experiments, which could be a low-cost method to engineer a surface for these purposes.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 December 1999

113

Abstract

Details

Pigment & Resin Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 May 2016

Xiaodong Zhang, Xiaohua Jie, Liuyan Zhang, Song Luo and Qiongbin Zheng

This paper aims to discuss that a WC/Co-Cr alloy coating was applied to the surface of H13 steel by laser cladding.

Abstract

Purpose

This paper aims to discuss that a WC/Co-Cr alloy coating was applied to the surface of H13 steel by laser cladding.

Design/methodology/approach

The oxidation behavior of the WC/Co-Cr alloy coating at 600°C was investigated by comparing it with the performance of the steel substrate to better understand the thermal stability of H13 steel.

Findings

The results showed that the WC/Co-Cr alloy coating exhibited better high-temperature oxidation resistance and thermal stability than did uncoated H13 steel. The coated H13 steel had a lower mass gain rate and higher microhardness than did the substrate after different oxidation times.

Originality/value

The WC/Co-Cr alloy coating was composed of e-Co, CW3, Co6W6C, Cr23C6 and Cr7C3; this mixture offered good thermal stability and better high-temperature oxidation resistance.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1994

J.H. Huang, J.Y. Pei, Y.Y. Qian and Y.H. Jiang

In this paper, a formula for life prediction of SMT solder joints under thermal cycling has been established on a damage model. The major failure mechanisms such as fatigue, creep…

Abstract

In this paper, a formula for life prediction of SMT solder joints under thermal cycling has been established on a damage model. The major failure mechanisms such as fatigue, creep and atmospheric oxidation have been considered in the formula. The experimental verification shows that the life formula established in this paper coincides with the experimental results.

Details

Soldering & Surface Mount Technology, vol. 6 no. 1
Type: Research Article
ISSN: 0954-0911

11 – 20 of over 2000