Search results

1 – 10 of 203
Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive…

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 May 2022

Amir A. Abdelsalam, Salwa H. El-Sabbagh, Wael S. Mohamed and Mohsen A. Khozami

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black…

Abstract

Purpose

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black (CB)-filled natural rubber (NR)/styrene-butadiene rubber (SBR)/nitrile butadiene rubber (NBR) blends, containing a variety of compatibilizers. Various compatibilizers, maleic acid anhydride (MAH), prepared emulsion and adhesion system (HRH) were used. A series of NR/SBR/NBR blends at a 30/30/40 blend ratio reinforced with 45 phr of CB were prepared using the master-batch method.

Design/methodology/approach

Thermal aging properties of the composites characterized by their aging coefficient and retention in tensile and elongation at break (E.B. %). Thermal degradation of ternary rubber blend composites based on melt blending has been studied using thermogravimetric analysis.

Findings

The swelling coefficient decreased with increased compatibilizer loading. Results also showed that the tensile strength and E.B. (%) decreased with aging over the entire aging period. Additionally, the addition of compatibilizers into the ternary rubber blend composite had slightly improved the thermal stability.

Research limitations/implications

Interactions between the different components of blends at the interfaces have a high impact on the interfacial properties of the rubber blend.

Practical implications

Compatibilizers significantly improve the properties of the resulting composites with the loading of investigated compatibilizers because of the uniform dispersion of CB in the rubber matrix.

Social implications

Using blends in the rubber industry led to the high-efficiency production of low-cost products.

Originality/value

The rubber blending has a significant positive effect on a wide range of applications such as structural applications, aerospace, military, packaging, tires and biomedical, so improving the compatibility of blends will make new materials suitable for new applications.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 January 2024

Manman Li, Qing Bao, Sumin Lei, Linlin Xing and Shu Gai

The service environment of urban polyethylene (PE) pipes has a crucial influence on their long-term safety and performance. Based on the application and structural performance…

Abstract

Purpose

The service environment of urban polyethylene (PE) pipes has a crucial influence on their long-term safety and performance. Based on the application and structural performance analysis of PE pipe failure cases, this study aims to investigate the impact of organic substances in the soil on the aging behavior of PE pipes by designing organic solutions with different concentrations, which are based on the composition of organic substances in the soil environment, and periodic immersion tests.

Design/methodology/approach

Soil samples in the vicinity of the failed pipes were analyzed by gas chromatography-mass spectrometry, sensitive organic substances were screened and soaking solutions of different concentrations were designed. After the soaking test, the PE pipe samples were analyzed using differential scanning calorimetry, Fourier-transform infrared spectroscopy and other testing methods.

Findings

The performance difference between the outer surface and the middle of the cross section of PE pipes highlights the influence of the soil service environment on their aging. Different organic solutions can have varying impacts on the aging behavior of PE pipes when immersed. For instance, when exposed to amine organic solutions, PE pipes may have an increased weight and decreased material yield strength, although there is no reduction in their thermal or oxygen stability. On the contrary, when subjected to ether organic solutions, the surface of PE pipe specimens may be affected, leading to a reduction in material fracture elongation and a decrease in their thermal and oxygen stability. Furthermore, immersion in either amine or ether organic solutions may result in the production of hydroxyl and other aging groups on the surface of the material.

Originality/value

Understanding the potential impact of organic substances in the soil environment on the aging of PE pipe ensures the long-term performance and safety of urban PE pipe. This research approach will provide valuable insights into improving the durability and reliability of urban PE pipes in soil environments.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 January 2024

Thomas Pinger, Mirabela Firan and Martin Mensinger

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of…

15

Abstract

Purpose

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of tests were conducted on zinc-5% aluminum galvanized test specimens under fire loads to verify the previous positive findings under largescale boundary conditions.

Design/methodology/approach

The emissivity of zinc-5% aluminum galvanized surfaces applied to steel specimens was determined experimentally under real fire loads and laboratory thermal loads in accordance with the normative specifications of the standard fire curve. Both large and smallscale specimens were used in this study. The steel grade and surface conditions of the specimens were varied for both test scenarios.

Findings

Largescale tests on specimens with typical steel construction dimensions under fire loads showed that the surface emissivity of zinc-5% aluminum galvanized steel was significantly lower than that of the conventionally galvanized steel. Only minor influences from the weathering of the specimens and steel chemistry were observed. These results agree well with those obtained from smallscale tests. The design values of zinc-5% aluminum melt (Zn5Al) required for the structural fire design were proposed based on the obtained results.

Originality/value

The novel tests presented in this study are the first ones to study the behavior of zinc-5% aluminum galvanized largescale steel construction components under the influence of real fire exposure and their positive effect on the emissivity of steel components galvanized by this method. The results provide valuable insights and information on the behavior in the case of fire and the associated savings potential for steel construction.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 November 2023

Meng Jiang, Yang Liu, Ke Li, Zhen Pan, Quan Sun, Yongzhe Xu and Yuan Tao

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Abstract

Purpose

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Design/methodology/approach

In this study, HTS at 250 °C was carried out to investigate the reliability of nano-silver sintered joints. Combining the evolution of the microstructure and shear strength of the joints, the degradation mechanisms of joints performance were characterized.

Findings

The results indicated that the degradation of the shear properties of sintered nano-silver joints on copper substrates was attributed to copper oxidation at the silver/copper interface and interdiffusion of interfacial elements. The joints decreased by approximately 57.4% compared to the original joints after aging for 500 h. In addition, severe coarsening of the silver structure was also an important cause for joints failure during HTS.

Originality/value

This paper provides a comparison of quantitative and mechanistic evaluation of sintered silver joints on bare copper substrates during HTS, which is of great importance in promoting the development of sintered silver technology.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 11 April 2023

Ronnarit Khuengpukheiw, Anurat Wisitsoraat and Charnnarong Saikaew

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on…

Abstract

Purpose

This paper aims to compare the wear behavior, surface roughness, friction coefficient and volume loss of high-velocity oxy-fuel (HVOF) sprayed WC–Co and WC–Cr3C2–Ni coatings on AISI 1095 steel with spraying times of 10 and 15 s.

Design/methodology/approach

In this study, the pin-on-disc testing technique was used to evaluate the wear characteristics at a speed of 0.24 m/s, load of 40 N and test time of 60 min under dry conditions at room temperature. The wear characteristics were examined and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The surface roughness of a coated surface was measured, and microhardness measurements were performed on the cross-sectioned and polished surfaces of the coating.

Findings

Spraying time and powder material affected the hardness of HVOF coatings due to differences in the porosity of the coated layers. The average hardness of the WC–Cr3C2–Ni coating with a spaying time of 15 s was approximately 14% higher than that of the WC–Cr3C2–Ni coating with a spraying time of 10 s. Under an applied load of 40 N, the WC–Co coating with a spraying time of 15 s had the lowest variation in the friction coefficient compared with the other coatings. The WC–Co coating with a spraying time of 10 s had the lowest average and variation in volume loss compared to the other coatings. The WC–Cr3C2–Ni coating with a spraying time of 10 s exhibited the highest average volume loss. The wear features changed slightly with the spraying time owing to variations in the hardness and friction coefficient.

Originality/value

This study investigated tribological performance of WC–Co; WC-Cr3C2-Ni coatings with spraying times of 10 and 15 s using pin-on-disc tribometer by rotating the relatively soft pin (C45 steel) against hard coated substrate (disc).

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 February 2023

Selinay Gumus, Kaan Aksoy and Ayse Aytac

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with…

Abstract

Purpose

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with nanoparticles shows better properties than the pure polymer itself. Nano or inorganic fillers are used in the polymeric matrix to improve thermal, mechanical and physical properties.

Design/methodology/approach

To improve thermal, mechanical and physical properties, UPE resin was modified with silica (S), boron nitride (BN) and S/BN hybrid nanoparticles at different ratios. Viscosity and solids content measurement, Fourier transform infrared spectroscopy, contact angle measurement, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and thermal conductivity coefficient tests were performed on the samples.

Findings

In the SEM analysis, the UPE sample showed a smooth appearance, while all samples containing additives showed phase separation and overall heterogeneous distribution. TGA results demonstrated that the thermal stability of the resin increased in the presence of S and BN additives. According to the results, it was observed that the presence of S and BN additives in the UPE resin and the use of certain ratios improved the resin properties.

Originality/value

As a result of the literature search, to the best of the authors’ knowledge, no study was found in which BN nanoparticles were included in the UPE resin together with S.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 November 2022

Eman Salim

The aim of the present paper to compare the cleaning treatments of paper samples exposed to artificial aging, toluene and isopropyl alcohol gel in cleaning wax stains.

Abstract

Purpose

The aim of the present paper to compare the cleaning treatments of paper samples exposed to artificial aging, toluene and isopropyl alcohol gel in cleaning wax stains.

Design/methodology/approach

In total, paper samples were made from wood pulp. They had a deterioration phenomenon represented in the stains of the paraffin wax, so two types of cleaning were used: A traditional method using a toluene solution and another new method using isopropanol gel by a cotton swap in a circular movement until the completion of the cleaning process. Then, all paper samples were treated with toluene and isopropanol to handle the second artificial aging and detect how the samples were affected by artificial aging. For identifying the efficacy of these materials in removing paraffin wax stains, a range of examinations and analyses were used, such as universal serial bus, scanning electron microscope, infrared analysis (IR), pH analysis, color change analysis. Moreover, these results were compared with the standard sample’s results.

Findings

The results of examinations and analyses proved that the use of toluene affected the paper samples. Their effects were twice as weak, fragile and degraded paper fibers compared to isopropanol gel. Therefore, the isopropanol gel is preferred for paper cleaning to the toluene solution.

Originality/value

This paper highlights the efficiency of isopropyl alcohol gel in cleaning wax stains from historical paper supports.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 July 2023

Wenzhe Ji

The purpose of this study is to further improve the performance of surface texture, the chemical polishing method was introduced and the effect of it on the surface morphology and…

Abstract

Purpose

The purpose of this study is to further improve the performance of surface texture, the chemical polishing method was introduced and the effect of it on the surface morphology and tribological properties of the surface texture was investigated.

Design/methodology/approach

The surface texture was processed on the surface of 304 stainless steel with laser technology in air medium. Hydrochloric acid solution (pH 2.4 ± 0.05) was selected and used to soak the prepared texture samples for 12 h. The surface morphology and elemental content of the samples were measured with the white light interferometry, SEM and EDS. To obtain the effect of acid corrosion on the tribological properties of textured surfaces, the samples were tested under dry friction and oil lubrication conditions.

Findings

The detailed study shows that the melt and burr of surface texture produced with laser processing was reduced due to the corrosion effect of hydrochloric acid. Therefore, the better interfacial tribological properties was obtained due to the improvement of surface-textured morphology.

Originality/value

The main contribution of this work is to provide a new reference for improving surface texture quality. It also lays a foundation for improving the tribological properties of the textured interface.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0094/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 203