Search results

1 – 10 of 109
Article
Publication date: 2 April 2024

Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…

Abstract

Purpose

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.

Design/methodology/approach

First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.

Findings

The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.

Practical implications

This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.

Originality/value

To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 December 2023

Ting Dai and Chang Tao

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but…

Abstract

Purpose

For a thermal protection system (TPS) of long endurance hypersonic flight vehicle (HFV), its thermal insulation property not only determines by the manufactured morphology but also changes along time. A thermal conductivity prediction model for aerogel considering heat treatment effect is carried out and applied to solve the heat conduction problem of a TPS. The aim of this study is to provide theoretical and numerical references for further development of aerogels applying to TPSs.

Design/methodology/approach

A thermal conductivity prediction model for aerogel is established considering treatment effect. The heat conduction problem of a TPS is derived and solved by combining the differential quadrature method and the Runge–Kutta method. The prediction results of aerogel thermal conductivities are verified by comparing with those in literature, while the calculated temperature field of TPS is verified by comparing with that by ABAQUS.

Findings

Numerical results show that when applying the current prediction model, the calculated high temperature area in the aerogel layer is narrowed due to the decrease of the thermal conductivity during heat treatment process.

Originality/value

This study will be beneficial to carry out the precise design of TPS for long endurance HFVs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 March 2024

Saloni Purandare and Chunhui Xiang

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE…

Abstract

Purpose

Firefighter Personal Protective Equipment (PPE) is the only barrier between the firefighter and hazardous environment. Gloves are a crucial component of the multi-component PPE. Over time the gloves have reduced the intensity of hand injuries, yet further improvement in terms of material selection and glove design is required to strike the balance between protection and comfort. Focusing on the material aspect, the purpose of this study is to present literature analysis on material selection and testing for firefighter gloves.

Design/methodology/approach

The study conducted a literature analysis on material selection and characterization of firefighter PPE. The review summarizes and evaluates past work addressing the characterization of firefighter gloves in accordance with NFPA 1971 requirements and points out found research gaps to aid with foundation of future research.

Findings

The study summarizes several research works to inform readers about the material selection and characterization of firefighter gloves. Based on the analyzed literature, the study resulted in material specification sheets for firefighter gloves. The developed material specification sheets provide information in terms of crucial material properties to be incorporated for accurate functioning of firefighter gloves, testing methods to validate those material properties and materials from analyzed literature exhibiting desired properties.

Originality/value

With large research addressing firefighter PPE, only limited studies focus specifically on gloves. Thus, this study provides a literature analysis covering material selection and testing for gloves. A consolidated firefighter gloves material specification document, which does not appear to be available in the literature, will provide a foundation for the development and characterization of firefighter gloves to better serve the functions along with ensuring user comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 November 2022

Merve Cerrahoğlu and Feray Maden

The most important need after natural disasters is the sheltering. However, most of the existing temporary shelters do not meet all requirements for long-term use and not provide…

Abstract

Purpose

The most important need after natural disasters is the sheltering. However, most of the existing temporary shelters do not meet all requirements for long-term use and not provide adequate flexibility within the space. This paper aims to develop a transitional postdisaster shelter transforming from a closed shape to an expanded form in response to changing functional and spatial needs of disaster victims. The study also proposes alternative unit combinations for various functions, and settlement layouts to create a comfortable living environment for occupants.

Design/methodology/approach

The research methodology is based on theoretical and design frameworks which requires inductive and deductive approaches. Forming the background of the study, the theoretical framework consists of four parts which are literature review on temporary shelters presenting state-of-the-art; determination of design guidelines and strategies based on shelter standards; identification of technical requirements; and analysis of existing temporary shelters. Having three parts, the design framework includes design of transformable transitional shelter based on three-dimensional modeling, creation of different unit combinations to be used for various purposes and development of settlement layouts as case studies.

Findings

The analysis conducted in this study demonstrates that most of the existing temporary shelters have limited geometric configurations and major problems in terms of their performance, transportation and storage. On the other hand, the transformable shelter proposed by the authors can provide form and spatial flexibilities thanks to its expansion properties, occupy less space for transportation, easily be transported to any desired location in its compact state and be customized according to user needs. Several units can be combined either to serve larger families or to be used for different functions.

Originality/value

This paper contributes to the literature as presenting not only a theoretical framework on temporary shelters but also a design framework on transformable shelter design for the ones who are willing to develop similar transformable shelters based on the determined guidelines, strategies and requirements.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 7 June 2022

Özge Gürsoy and Nazlı Ferah Akıncı

The inadequacy of regulations, the uncertainty of the quality of houses produced and the needs of users all highlight the need for a house analysis in Turkey. The goal of this…

Abstract

Purpose

The inadequacy of regulations, the uncertainty of the quality of houses produced and the needs of users all highlight the need for a house analysis in Turkey. The goal of this study is to understand housing quality in Turkey based on the gap between expectations and existing housing stock, to identify the main housing expectations and the problematic issues in the current housing situation.

Design/methodology/approach

The authors designed a survey using the quality indicators of several well-known housing quality assessment tools to reveal residents' housing preferences and current housing situation in Turkey. The authors analyzed the survey results to identify the gap between housing preferences and existing conditions to reveal the housing quality of Turkish housing.

Findings

Overall results show that residents in Turkey, regardless of their demographics, want and need better houses. It was determined that physical conditions, safety, aesthetics and accessibility are the issues for which the expectations of the participants are high and the lack of which is most felt.

Originality/value

This paper reveals the residents' perspective on housing and their housing quality. It emphasizes the need for more research on housing quality, the need for updated regulation and necessity of a housing quality assessment tool in Turkey.

Details

Property Management, vol. 42 no. 2
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 October 2022

Parvathidevi A. and Naga Satish Kumar Ch

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict…

Abstract

Purpose

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict the thermal conductivity using concrete density. As these simulation and regression analyses are essential tools in designing the thermal insulation concretes with various densities, they sequentially reduce the associated time, effort and cost.

Design/methodology/approach

Two grades of concretes were taken for thermal analysis. They were designed by replacing the natural fine aggregates with thermal insulation aggregates: expanded polystyrene, exfoliated vermiculite and light expanded clay. Density, temperature difference, specific heat capacity, thermal conductivity and time were measured by conducting experiments. This data was used to simulate concrete slabs in ANSYS. Regression analysis was performed to obtain the relation between density and thermal conductivity. Finally, the quality of the predicted regression equations was assessed using root mean square error (RMSE), mean absolute error (MAE), integral absolute error (IAE) and normal efficiency (NE).

Findings

ANSYS analysis on concrete slabs accurately estimates the thermal behavior of concrete, with lesser error value ranges between 0.19 and 7.92%. Further, the developed regression equations proved accurate with lower values of RMSE (0.013 to 0.089), MAE (0.009 to 0.088); IAE (0.216 to 5.828%) and higher values of NE (94.16 to 99.97%).

Originality/value

The thermal analysis accurately simulates the experimental transfer of heat across the concrete slab. Obtained regression equations proved helpful while designing the thermal insulation concrete.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2024

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…

Abstract

Purpose

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.

Design/methodology/approach

For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.

Findings

The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.

Research limitations/implications

In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.

Originality/value

Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 109