Search results

1 – 10 of 913
Open Access
Article
Publication date: 8 March 2021

Ga Yoon Choi, Hwan Sung Kim, Hyungkyoo Kim and Jae Seung Lee

In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies…

3168

Abstract

Purpose

In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies to mitigate the negative impacts of heat in cities. Adopting green infrastructure and cooling pavements are some of the many ways to promote thermal comfort against heat. The purpose of this study is to improve microclimate conditions and thermal comfort levels in high-density living conditions in Seoul, South Korea.

Design/methodology/approach

This study compares six design alternatives of an apartment complex with different paving and planting systems. It also examines the thermal outcome of the alternatives under normal and extreme heat conditions to suggest strategies to secure acceptable thermal comfort levels for the inhabitants. Each alternative is analyzed using ENVI-met, a software program that simulates microclimate conditions and thermal comfort features based on relationships among buildings, vegetation and pavements.

Findings

The results indicate that grass paving was more effective than stone paving in lowering air temperature and improving thermal comfort at the near-surface level. Coniferous trees were found to be more effective than broadleaf trees in reducing temperature. Thermal comfort levels were most improved when coniferous trees were planted in paired settings.

Practical implications

Landscape elements show promise for the improvement of thermal conditions because it is much easier to redesign landscape elements, such as paving or planting, than to change fixed urban elements like buildings and roads. The results identified the potential of landscape design for improving microclimate and thermal comfort in urban residential complexes.

Originality/value

The results contribute to the literature by examining the effect of tree species and layout on thermal comfort levels, which has been rarely investigated in previous studies.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11435

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

466

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 24 January 2020

Mingyu Zhang, Jing Wang, Peiran Yang, Zhaohua Shang, Yi Liu and Longjie Dai

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using…

Abstract

Purpose

This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using a thermal elastohydrodynamic lubrication (EHL) model for finite line contact. Concretely, the effects of the equivalent curvature radius of the bush and the pin, and the length of the bush are investigated.

Design/methodology/approach

In this paper, the contact between the bush and pin is simplified as finite line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. A constitutive equation Ree–Eyring fluid is used in the calculations.

Findings

It is found that by selecting an optimal equivalent radius of curvature and prolonging the bush length can improve the lubrication state effectively.

Originality/value

Under specific working conditions, there exists an optimal equivalent radius to maximize the minimum oil film thickness in the contact zone. The increase of generatrix length will weaken the stress concentration effect in the rounded corner area at both ends of the bush, which can improve the wear resistance of chain.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0448.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1061

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 September 2022

Paul Roelofsen and Kaspar Jansen

The purpose of this study is to analyze the question “In what order of magnitude does the comfort and performance improvement lie with the use of a cooling vest for construction…

1268

Abstract

Purpose

The purpose of this study is to analyze the question “In what order of magnitude does the comfort and performance improvement lie with the use of a cooling vest for construction workers?”.

Design/methodology/approach

The use of personal cooling systems, in the form of cooling vests, is not only intended to reduce the heat load, in order to prevent disruption of the thermoregulation system of the body, but also to improve work performance. A calculation study was carried out on the basis of four validated mathematical models, namely a cooling vest model, a thermophysiological human model, a dynamic thermal sensation model and a performance loss model for construction workers.

Findings

The use of a cooling vest has a significant beneficial effect on the thermal sensation and the loss of performance, depending on the thermal load on the body.

Research limitations/implications

Each cooling vest can be characterized on the basis of the maximum cooling power (Pmax; in W/m²), the cooling capacity (Auc; in Wh/m2) and the time (tc; in minutes) after which the cooling power is negligible. In order to objectively compare cooling vests, a (preferably International and/or European) standard/guideline must be compiled to determine the cooling power and the cooling capacity of cooling vests.

Practical implications

It is recommended to implement the use of cooling vests in the construction process so that employees can use them if necessary or desired.

Social implications

Climate change, resulting in global warming, is one of the biggest problems of present times. Rising outdoor temperatures will continue in the 21st century, with a greater frequency and duration of heat waves. Some regions of the world are more affected than others. Europe is one of the regions of the world where rising global temperatures will adversely affect public health, especially that of the labor force, resulting in a decline in labor productivity. It will be clear that in many situations air conditioning is not an option because it does not provide sufficient cooling or it is a very expensive investment; for example, in the situation of construction work. In such a situation, personal cooling systems, such as cooling vests, can be an efficient and financially attractive solution to the problem of discomfort and heat stress.

Originality/value

The value of the study lies in the link between four validated mathematical models, namely a cooling vest model, a thermophysiological human model, a dynamic thermal sensation model and a performance loss model for construction workers.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 9 December 2019

Jihai Jiang, Wei-Peng Yan and Ge-Qiang Li

The purpose of this paper is to analyze the micro-motion of the cylinder block.

Abstract

Purpose

The purpose of this paper is to analyze the micro-motion of the cylinder block.

Design/methodology/approach

Based on the elasto-hydrodynamic lubrication, a numerical model for the cylinder block/valve plate interface is proposed, with consideration of the elastic deformations, the pressure-viscosity effect and asperity contacts. The influence-function method is applied to calculating the actual deformations of the cylinder block and the valve plate. The asperity contact model simplified from Greenwood assumption is introduced into the numerical model. Furthermore, the relationship between the micro-motion and the operating condition, the sealing belt width is discussed, respectively.

Findings

The results show an increase in the discharge pressure causes the tilt state and the vibrating motion getting worse, which can be eased by improving the rotational speed, the sealing belt width and the ratio of external and internal sealing belt width.

Originality/value

The proposed research can provide a theoretical reference for the optimizing design of cylinder block/valve plate pair.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 9 November 2022

Guoquan Xu, Shiwei Feng, Shucen Guo and Xiaolan Ye

China has proposed two-stage goals of carbon peaking by 2030 and carbon neutralization by 2060. The carbon emission reduction effect of the power industry, especially the thermal

Abstract

Purpose

China has proposed two-stage goals of carbon peaking by 2030 and carbon neutralization by 2060. The carbon emission reduction effect of the power industry, especially the thermal power industry, will directly affect the progress of the goal. This paper aims to reveal the spatial-temporal characteristics and influencing factors of carbon emission efficiency of the thermal power industry and proposes policy suggestions for realizing China’s carbon peak and carbon neutralization goals.

Design/methodology/approach

This paper evaluates and compares the carbon emission efficiency of the thermal power industry in 29 provinces and regions in China from 2014 to 2019 based on the three-stage slacks-based measure (SBM) of efficiency in data envelopment analysis (DEA) model of undesired output, excluding the influence of environmental factors and random errors.

Findings

Empirical results show that during the sample period, the carbon emission efficiency of China’s thermal power industry shows a fluctuating upward trend, and the carbon emission efficiency varies greatly among the provincial regions. The carbon emission efficiency of the interregional thermal power industry presents a pattern of “eastern > central > western,” which is consistent with the level of regional economic development. Environmental factors such as economic level and environmental regulation level are conducive to the improvement of carbon emission efficiency of the thermal power industry, but the proportion of thermal power generation and industrial structure is the opposite.

Originality/value

This paper adopts the three-stage SBM–DEA model of undesired output and takes CO2 as the undesired output to reveal the spatial-temporal characteristics and influencing factors of carbon emission efficiency in China’s thermal power industry. The results provide a more comprehensive perspective for regional comparative evaluation and influencing factors of carbon emission efficiency in China’s thermal power industry.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 30 March 2023

Guilherme Duarte, Ana M.A. Neves and António Ramos Silva

The goal of this work is to create a computational finite element model to perform thermoelastic stress analysis (TSA) with the usage of a non-ideal load frequency, containing the…

Abstract

Purpose

The goal of this work is to create a computational finite element model to perform thermoelastic stress analysis (TSA) with the usage of a non-ideal load frequency, containing the effects of the material thermal properties.

Design/methodology/approach

Throughout this document, the methodology of the model is presented first, followed by the procedure and results. The last part is reserved to results, discussion and conclusions.

Findings

This work had the main goal to create a model to perform TSA with the usage of non-ideal loading frequencies, considering the materials’ thermal properties. Loading frequencies out of the ideal range were applied and the model showed capable of good results. The created model reproduced acceptably the TSA, with the desired conditions.

Originality/value

This work creates a model to perform TSA with the usage of non-ideal loading frequencies, considering the materials’ thermal properties.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1298

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 913