Search results

1 – 10 of 189
Article
Publication date: 25 January 2022

Vigneshkumar Chellappa and Vasundhara Srivastava

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to…

243

Abstract

Purpose

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to explore thermal comfort in residential buildings (TCinRB) research in India, identify research trends using a science mapping approach and provide a perspective for recommending future research in TCinRB.

Design/methodology/approach

This study used the VOSviewer tool to conduct a systematic analysis of the development trend in TCinRB studies in India based on Scopus Index articles published between 2001 and 2020. The annual numbers of articles, geographical locations of studies, major research organizations and authors, and the sources of journals on TCinRB were presented based on the analysis. Then, using co-authorship analysis, the collaborations among the major research groups were reported. Furthermore, research trends on TCinRB studies were visually explored using keyword co-occurrence analysis. The emerging research topics in the TCinRB research community were discovered by analyzing the authors’ keywords.

Findings

The findings revealed that studies had been discovered to pay more attention to north-east India, vernacular architecture, Hyderabad apartments and temperature performance in the past two decades. Thermal adaptation, composite climate, evaporative cooling and clothing insulation are emerging research areas in the TCinRB domain. The findings summarized mainstream research areas based on Indian climatic zones, addressed current TCinRB research gaps and suggested future research directions.

Originality/value

This review is particularly significant because it could help researchers understand the body of knowledge in TCinRB and opens the way for future research to fill an important research gap.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 May 2023

Hikmat Ali, Amal Abed and Alaa Rababah

As numerous research studies have investigated the effect of the built environment on human contentment, building regulations have advanced as a direct impact on indoor…

Abstract

Purpose

As numerous research studies have investigated the effect of the built environment on human contentment, building regulations have advanced as a direct impact on indoor environmental quality (IEQ) to include thermal, lighting, air quality and acoustics systems. Yet, while IEQ and residents' satisfaction have been discussed thoroughly in previous research, only a few studies have researched the role of building regulations as motivating factors in the housing context, specifically in Jordan.

Design/methodology/approach

A mixed-method approach was adopted to address this issue involving genotype analysis for building morphology and simulation using Design Builder software. This helped to understand the impact of building regulations variables, including building setback, the height of an adjacent building, orientation and building geometry. Meanwhile, an online survey was conducted to include 410 residents spread out in various building categories (A, B, C and D).

Findings

The results of this study revealed that building regulation of setbacks, the height of adjacent buildings and orientation are significant parameters that directly affect IEQ and residents' satisfaction. In addition, based on this study, the matter was clear that the highest total satisfaction resulted based on the highest comfort level in terms of temperature and daylight obtained due to larger setback and lower building height. Yet, this finding undermined smart growth principles due to the limited scope of building regulation that focused only on spatial and physical dimensions, so improving to include environmental aspects such as passive design strategies that appreciate natural ventilation and lighting is necessary, which positively impact IEQ.

Originality/value

The concept of IEQ and residents' satisfaction have been discussed thoroughly, but only a few studies have researched the role of building regulations as motivating factors in the housing context specifically in Jordan.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 18 no. 1
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Book part
Publication date: 18 January 2024

Bhimsen Rajkumarsingh, Robert T. F. Ah King and Khalid Adam Joomun

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the…

Abstract

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the University of Mauritius are evaluated in this study. Students and building occupants were asked to fill out surveys on-site as data was gathered from sensors throughout the structure. The Thermal Sensation Vote (TSV) and other important data were collected through the surveys, including the effect of wind on thermal comfort. An adaptive model incorporating solar and wind effects was evaluated using multiple linear regression techniques and RStudio. Three models were used to evaluate thermal comfort, including the adaptive one. Numerous models were compared and evaluated in order to select the best one. It was found that the adaptive model (Model 1) was deemed to be the best model for its application. It was also found that Fanger's PMV/PPD (Model 2) was a very good approach to determining thermal comfort. Through thorough analysis, it was concluded that the range of air temperature and wind speed for thermal comfort was 25.830°C–28.0°C and 0.26 m/s to 0.42 m/s, respectively. In order for cities to remain secure, resilient and sustainable, it will be important to manage thermal comfort and reduce populations' exposure to heat stress (SDG 11). The achievement of income and productivity goals will be hampered if measures to protect populations from heat stress are not taken (SDG 8). Thermal regulation is also necessary for the provision of numerous health services (SDG 3).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 January 2024

Elvis Attakora-Amaniampong, Iruka Chijindu Anugwo and Miller Williams Appau

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Abstract

Purpose

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Design/methodology/approach

Using multiple regression and exploratory factor analysis through post occupancy evaluation, 26 indoor environmental quality (IEQ) indicators were explored among 1,912 students living in Purpose-Built off-campus university housing in Northern Ghana.

Findings

The study established a negative relationship between indoor environmental quality and residential mobility among student housing in Northern Ghana. Residential mobility is primarily attributed to the dissatisfaction with thermal and indoor air quality.

Practical implications

The negative relationship affects vacancy and rental cashflows for property investors. Also, understanding local environmental conditions can influence future student housing design and enhance thermal and indoor air quality.

Originality/value

The authors contribute to studies on indoor environmental quality in student housing. In addition, establishing the relationship between indoor environmental quality and residential mobility in tropical African regions is novel.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 January 2024

Amanpreet Kaur Kharbanda, Kamal Raj Dasarathan, S.K. Sinha, T. Senthil Kumar and B. Senthil Kumar

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study…

39

Abstract

Purpose

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study aims to investigate the comfort and mechanical properties of these woven materials.

Design/methodology/approach

Taguchi L16 experimental design (5 factors and 4 levels) with response surface methodology tool was used to optimize mechanical and comfort characteristics. The yarn samples used in this study are cotton/banana with a blend ratio of 70:30. Fabric type (A), grams per square metre (GSM; B), yarn count (C), fabric thickness (D) and cloth cover factor (E) are the chosen process characteristics.

Findings

The highest tensile strength and tearing strength of the cotton/banana blended fabric samples were obtained as 326.3 N and 90.3 k.gf/cm, respectively. Similarly, the highest thermal conductivity and overall moisture management capacity values were found to be 0.6628 and 3.06 W/mK X10−4, respectively. The optimized process parameters for obtaining maximum mechanical properties were using canvas fabric structure, 182 GSM, 36s Ne yarn count, 0.48 mm fabric thickness and 23.5 cloth cover factor. Similarly, the optimized process parameters for obtaining maximum comfort properties were achieved using a twill fabric structure, 182 GSM, 32s Ne yarn count, 0.4 mm fabric thickness and 23 cloth cover factor.

Originality/value

In contrast to synthetic fabrics, banana fibre and its blended materials are significant ecological solutions for apparel and functional clothing. Products made from banana fibre are a sustainable and green alternative to conventional fabrics. Banana fibre obtained from the pseudostem of the plant has an appearance similar to ramie and bamboo fibres. Numerous studies showed that banana fibre could absorb significant moisture and be spun into yarn through ring and rotor spinning technology. On the other hand, this fibre can be easily combined with cotton, jute, wool and synthetic fibre. The present utilization of pseudostem of banana plant fibre is very minimal. This type of research improves the usability of bananas their blended fabrics as apparel and functional wear.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 189