Search results

1 – 10 of over 1000
To view the access options for this content please click here
Article
Publication date: 4 November 2014

Meshack O. Efeoma and Ola Uduku

The purpose of this paper is to adduce the most appropriate thermal comfort assessment method for determining human thermal comfort and energy efficient temperature…

Abstract

Purpose

The purpose of this paper is to adduce the most appropriate thermal comfort assessment method for determining human thermal comfort and energy efficient temperature control in office buildings in tropical West Africa.

Design/methodology/approach

This paper examines the Adaptive Thermal Comfort Standard, from its research evolution to its contemporary use as an environmental design assessment Standard. It compares the adaptive component of ASHRAE Standard 55 and the European CEN/EN 15251. It begins by reviewing relevant literature and then produces a comparative analysis of the two standards, before suggesting the most appropriate Adaptive Thermal Comfort Standard for use in assessing conditions in tropical climate conditions. The suggested Standard was then used to analyse data collected from the author's pilot research into thermal conditions, in five office buildings situated in the city of Enugu, South Eastern Nigeria.

Findings

The paper provides insight as to why the ASHRAE adaptive model is more suitable for thermal comfort assessment of office buildings in the tropical West African climate. This was demonstrated by using the ASHRAE Thermal Comfort Standard to assess comfort conditions from pilot research study data collected on Nigerian office buildings by the author.

Originality/value

The paper compares the adaptive component of ASHRAE Standard 55 with CEN/EN 15251, and their different benefits for use in tropical climates. It suggested the need for further research studies and application of the ASHRAE Adaptive Thermal Comfort Standard in the tropical West African climate.

To view the access options for this content please click here
Article
Publication date: 8 August 2016

Baharuddin Hamzah, Muhammad Taufik Ishak, Syarif Beddu and Mohammad Yoenus Osman

The purpose of this paper is to analyse thermal comfort and the thermal environment in naturally ventilated classrooms. Specifically, the aims of the study were to…

Abstract

Purpose

The purpose of this paper is to analyse thermal comfort and the thermal environment in naturally ventilated classrooms. Specifically, the aims of the study were to identify the thermal environment and thermal comfort of respondents in naturally ventilated university classrooms and compare them with the ASHRAE and Indonesian National Standard (SNI); to check on whether the predicted mean vote (PMV) model is applicable or not for predicting the thermal comfort of occupants in naturally ventilated university classrooms; and to analyse the neutral temperature of occupants in the naturally ventilated university classrooms.

Design/methodology/approach

The study was carried out at the new campus of Faculty of Engineering, Hasanuddin University, Gowa campus. A number of field surveys, which measured thermal environments, namely, air temperature, mean radiant temperature (MRT), relative humidity, and air velocity, were carried out. The personal activity and clothing properties were also recorded. At the same time, respondents were asked to fill a questionnaire to obtain their thermal sensation votes (TSV) and thermal comfort votes (TCV), thermal preference, and thermal acceptance. A total of 118 respondents participated in the study. Before the survey was conducted, a brief explanation was provided to the participants to ensure that they understood the study objectives and also how to fill in the questionnaires.

Findings

The results indicated that the surveyed classrooms had higher thermal environments than those specified in the well-known ASHRAE standard and Indonesian National Standard (SNI). However, this condition did not make respondents feel uncomfortable because a large proportion of respondents voted within the comfort zone (+1, 0, and −1). The predictive mean vote using the PMV model was higher than the respondents’ votes either by TSV or by TCV. There was a huge difference between neutral temperature using operative temperature (To) and air temperature (Ta). This difference may have been because of the small value of MRT recorded in the measured classrooms.

Originality/value

The research shows that the use of the PMV model in predicting thermal comfort in the tropic region might be misleading. This is because PMV mostly overestimates the TSV and TCV of the respondents. People in the tropic region are more tolerant to a higher temperature. On the basis of this finding, there is a need to develop a new thermal comfort model for university classrooms that is particularly optimal for this tropical area.

Details

Structural Survey, vol. 34 no. 4/5
Type: Research Article
ISSN: 0263-080X

Keywords

To view the access options for this content please click here
Article
Publication date: 6 June 2019

Zhen Peng, Wu Deng and Yuanda Hong

From the 2000s onward, construction practices of urban residential buildings in China have shown a material transformation from clay brick to aerated concrete block…

Abstract

Purpose

From the 2000s onward, construction practices of urban residential buildings in China have shown a material transformation from clay brick to aerated concrete block. Moreover, the consumption of insulating materials for buildings has been increasing due to the new requirements in building energy-saving standards. This transformation and the increased consumption of insulating materials might have a vital impact on a building’s thermal comfort and its associated energy flows. Therefore, the purpose of this paper is to investigate the indoor thermal performance of urban residential buildings built with different materials and further discuss the correlations between indoor thermal comfort and the associated energy input.

Design/methodology/approach

This study investigated four residential buildings selected from four residential communities located in the cold climate zone of China. The Integrated Environment Solutions program was used to evaluate the thermal comfort levels and to quantify the operational energy consumption of the case study buildings. Additionally, the University of Bath’s Inventory of Carbon and Energy database was used to estimate the embodied energy consumption and CO2 emissions.

Findings

The study found that materials transition and increasing consumption did not necessarily improve indoor thermal comfort. However, the materials transition has significantly decreased the embodied energy consumption of urban residential buildings. Furthermore, the increased utilization of insulating materials has also decreased the heating and cooling energy consumption. Therefore, overall, the environmental impacts of urban residential buildings have been reduced significantly.

Practical implications

In the future, residential buildings completed in the 1990s will need regular maintenance, such as adding insulation. Residential buildings completed based on the latest energy-saving requirements should optimize their ventilation design, for example, by increasing the ventilation rate and by reducing solar heat gains in the summer.

Originality/value

This paper investigates the effects of the materials change on thermal comfort levels and the environmental impacts of urban residential buildings in the cold climate zone of China, as these have not been the focus of many previous studies.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

To view the access options for this content please click here
Article
Publication date: 16 December 2020

Charles Munonye

The paper aims to determine the thermal comfort perception of schoolchildren from a warm and humid environment. There is a concern about the effect of high temperature on…

Abstract

Purpose

The paper aims to determine the thermal comfort perception of schoolchildren from a warm and humid environment. There is a concern about the effect of high temperature on the health and academic performance of schoolchildren.

Design/methodology/approach

Objective and subjective methodological approaches were adopted to collect data during the fieldwork in the selected primary schools. ASHRAE adaptive comfort model was adopted to analyze the data.

Findings

The paper provided empirical results about the comfort requirements of schoolchildren from the warm and humid environment. During the occupied school time, the studied schoolchildren were found to tolerate temperatures higher than the upper limit temperature recommended by ASHRAE Standard 55. The paper recommends that the studied children may not need any active ventilator to be thermally comfortable during the occupied school hours

Originality/value

The paper found the range of temperatures that schoolchildren from the warm and humid environment can adapt to. The information may be useful to architects, engineers and facility managers

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

To view the access options for this content please click here
Article
Publication date: 21 November 2016

Salman Shooshtarian and Ian Ridley

Assessment of outdoor thermal perception in urban spaces is of particular importance due to its financial, social and ecological consequences. Thermal perception includes…

Abstract

Purpose

Assessment of outdoor thermal perception in urban spaces is of particular importance due to its financial, social and ecological consequences. Thermal perception includes four elements: thermal sensation votes (TSV), thermal preference (Tpref), overall thermal comfort (Tc) and thermal acceptability (Taccept). Thermal acceptability can offer a benchmark that specifies the acceptable thermal range (ATR), which is useful for urban planners, designers, and bio-meteorologists. ATR, however, can be defined either using direct or indirect measures. The purpose of this paper is to investigate the validity of the indirect measures of ATR, which are most commonly used in outdoor thermal comfort assessments.

Design/methodology/approach

This study was conducted in the context of Melbourne, which has an oceanic temperate climate (Cfb). Three sites forming RMIT University City Campus (RUCC) were selected as the case studies, which were located in the heart of Melbourne Central Business District. A field survey was conducted in RUCC during three seasons, from November 2014 (Spring) to May 2015 (Autumn), which consisted of concurrent field measurements and questionnaire surveys from 9:00 a.m. to 5:00 p.m.

Findings

In total, 1,059 valid questionnaires were collected from the three sites of RUCC. The results of comparative analysis between the different measures of ATR determination showed that the various elements of thermal perceptions expressed the users’ thermal judgements in different ways. Therefore, it was found that the instruction recommended by the thermal comfort standards on the definition of ATR failed to provide an appropriate estimation of ATR for outdoor built environments. The ATR, defined using TSV, therefore, was revised by the direct measure of thermal acceptability. The resulting range showed broader limits in acceptable thermal conditions in RUCC outdoor spaces users. Lastly, the results suggest that in the absence of directly measured acceptability of thermal conditions in field surveys, overall comfort is the most appropriate indirect measure to use.

Originality/value

Some indoor thermal comfort studies have used the alternatives for defining ATR. However, as the applicability of these four methods is yet to be fully explored in outdoor conditions with large weather variations, it is valuable to conduct a comparative analysis among these methods. This study also intended to understand the dynamics of comfort range under non-steady and non-uniform outdoor conditions. The resultant outcome has provided information on the relationship between different measures of thermal perceptions. Ultimately, this research aimed to explore the extent to which the indirect measures of acceptability are considered as a reliable source of information compared to the direct measure.

Details

Smart and Sustainable Built Environment, vol. 5 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

To view the access options for this content please click here
Article
Publication date: 29 April 2021

Zul-Atfi Bin Ismail

Improper evaluation and information mismanagement concerning thermal comfort appears to negatively affect occupants' satisfaction and building energy consumption in…

Abstract

Purpose

Improper evaluation and information mismanagement concerning thermal comfort appears to negatively affect occupants' satisfaction and building energy consumption in precast concrete (PC) building contexts. Predictive models are particularly problematic in PC building construction projects where natural ventilation levels do not coincide with occupants' thermal comfort and thermal sensation specifications.

Design/methodology/approach

A systematic literature review is undertaken to explore the viability and benefits of a new ICT-based approach for meeting social and environmental objectives.

Findings

Sophisticated thermal comfort system solutions are essential for optimising thermal comfort and saving energy in PC building construction projects.

Originality/value

It is imperative that designers and manufacturers are kept up-to-date with the possibilities and potentials associated with new and nascent technologies so that building projects can meet key sustainability criteria.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 2012

Mike Adebamowo and Adetokunbo O. Ilesanmi

Buildings have a considerable impact on the environment being responsible for a substantial proportion of global energy consumption, thus contributing significantly to the…

Abstract

Buildings have a considerable impact on the environment being responsible for a substantial proportion of global energy consumption, thus contributing significantly to the anthropogenic CO2 emissions, which evidence suggests is the main cause of climate change. Mitigation and adaptation measures are required to tackle the challenges of climate change. Adaptive measures – structural and behavioural strategies – are the focus of this paper. Structural strategies include flexible and adaptive structural systems; while behavioural strategies cover the spatial, personal, and psychological control measures which may influence the design and operations of buildings. The study explores the adaptive thermal comfort of occupants and examines the design strategies for adapting buildings to climate change in the tropical context, with a view to determine the effectiveness of these strategies as observed in the case study. The study was conducted during the rainy and dry seasons in Abeokuta, Ogun State, Nigeria, located in a warm humid climate zone.

The Institute of Venture Design student hostel was used as case-study to conduct the survey on a sample of 40 respondents by means of structured questionnaire. The respondents' thermal sensation and access to thermal controls were determined, and their thermal sensation and thermal adaptability in both seasons comparatively analyzed. Indoor environmental parameters including air temperature, mean radiant temperature, relative humidity and air velocity were also measured. The data were analyzed using relevant descriptive and inferential statistics. The study discussed the effectiveness of design strategies available for building adaptation in an era of climate change within the warm humid environment, concluding on the need for greater synergy between the techno-structural and socio-behavioural dimensions of building adaptation.

Details

Open House International, vol. 37 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 2012

Shariful Shikder, Monjur Mourshed and Andrew Price

Recent climate change projections estimate that the average summertime temperature in the southern part of Great Britain may increase by up to 5.4°C by the end of the…

Abstract

Recent climate change projections estimate that the average summertime temperature in the southern part of Great Britain may increase by up to 5.4°C by the end of the century. The general consensus is that projected increases in temperature will render British dwellings vulnerable to summer overheating and by the middle of this century it may become difficult to maintain a comfortable indoor environment, if adaptation measures are not well integrated in the design and operation of new dwellings, which are likely to remain in use beyond the 2050s. The challenge is to reduce overheating risks by integrating building and user adaptation measures, to avoid energy intensive mechanical cooling. Developing guidelines and updating building regulations for adaptation, therefore, requires an understanding of the baseline scenario; i.e. the performance of existing buildings in future climates.

This paper aims to investigate the performance of new-build multi-occupancy British dwellings for human thermal comfort in the present-day and projected future climates in four regional cities: Birmingham, Edinburgh, London and Manchester. Evaluations are carried out by a series of dynamic thermal simulations using widely adopted threshold temperature for overheating, as well as adaptive thermal comfort standards. This study thus offers a unique perspective on regional variations of performance and provides a clearer snapshot because of the use of more appropriate adaptive comfort standards in the evaluations. Finally, the paper sheds light on possible personal and building adaptation measures to alleviate overheating risks.

Details

Open House International, vol. 37 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

To view the access options for this content please click here
Article
Publication date: 28 February 2019

Timothy Oluseun Adekunle

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a…

Abstract

Purpose

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to investigate the performance of the case study buildings under non-extreme weather conditions.

Design/methodology/approach

The research explores three UK sites using the test reference year (TRY) weather files for the current and future weather conditions. The study focuses on the Summer performance and heat stress in non-extreme weather conditions; therefore, the Design Summer Year (DSY) weather files are not used for the simulations. The simulation data are calibrated and validated using the measured data from the field study.

Findings

The results revealed the mean predicted temperatures varied from 20.2–20.8°C for the 2000s. The mean temperatures for the 2030s ranged from 23.1 to 24.2°C. Higher temperatures are predicted at the buildings in the Southeast site than the Midlands and the Northwest sites. The results revealed that there is no significant improvement in the thermal environment when the floor area and the floor-to-ceiling height are increased. However, the study showed that the integration of different design interventions can improve the future performance and resilience of the buildings in various weather conditions.

Research limitations/implications

By applying the wet-bulb globe temperature (WBGT) and the Universal Thermal Comfort Index (UTCI) mathematical models to calculate the heat stress at the buildings, the study proposes the WBGT of 20.0°C and the UTCI of 24.1°C as possible heat stress indicators for occupants of the buildings in the 2030s.

Practical implications

On the one hand, the results revealed the maximum temperatures in some of the case study buildings exceed the comfort threshold (28°C). On the other hand, the study showed that occupants of the buildings are not prone to extreme Summertime overheating and heat stress under moderate weather conditions. However, different outcomes may be predicted if DSY weather files for the selected sites are considered.

Originality/value

This study is the first reported work to explore building simulation and mathematical equations to investigate Summer performance, comfort and heat stress indexes in timber buildings under moderate weather conditions in different regional sites in the UK.

To view the access options for this content please click here
Article
Publication date: 4 September 2019

Gabriela Zapata-Lancaster

This paper aims to investigate the thermal comfort practices in four non-domestic buildings and explores how the organisational context affects the actions and practices…

Abstract

Purpose

This paper aims to investigate the thermal comfort practices in four non-domestic buildings and explores how the organisational context affects the actions and practices of occupants and facilities managers.

Design/methodology/approach

The study applied qualitative methods and post-occupancy evaluation methodologies to investigate the thermal practices in four case studies. A combination of qualitative and quantitative methodologies was deployed, namely, semi-structured interviews, questionnaires, observation and monitoring studies of building performance.

Findings

The concept “distributed agency” was applied to analyse the thermal comfort practices in non-domestic buildings. This concept helped to illustrate everyday actions by occupants and facilities managers in relation to the organisational context. Occupants’ actions and building management practices could be affected by the organisation norms and context leading to problems and dissatisfaction with indoor thermal conditions.

Research limitations/implications

This study is based on a small number of case studies and it is exploratory. Extensive monitoring data were not available. However, the research identified the thermal conditions and occupants’ satisfaction levels as background where actions to achieve thermal comfort and facilities manager’s practices took place.

Practical implications

The study suggests the need to examine in greater depth how the organisational goals and individual goals could be linked to support specific building performance targets.

Social implications

The paper advocates for the application of multidisciplinary approaches to study the occupant dimension of building performance. It suggests the need to develop a nuanced understanding of how occupants pursue comfort as active agents who interact with the built environment.

Originality/value

The study has applied social practice theory to consider the influence of the organisation on thermal comfort practices in non-domestic buildings; considering the perspectives of building occupants and facilities managements within the organisational context.

Details

Facilities , vol. 38 no. 1/2
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of over 1000