Search results

1 – 10 of 182
Article
Publication date: 28 March 2023

Ibrahim Neya, Daniel Yamegueu, Adamah Messan, Yezouma Coulibaly, Arnaud Louis Sountong-Noma Ouedraogo and Yawovi Mawuénya Xolali Dany Ayite

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal…

Abstract

Purpose

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal properties of the earthen blocks, and thus their capacity to provide adequate thermal comfort to occupants. This article examines the influence of cement and geopolymer binders on thermal comfort in compressed earthen buildings in hot and arid climates.

Design/methodology/approach

The test cell is on the building platform in Burkina Faso. The building is made of compressed earth blocks (CEB) consisting of laterite, water and binder. The thermal models of the building were implemented in EnergyPlus v9.0.1 software. Empirical validation is used to check whether the model used for the thermal dynamic simulation can reproduce with accuracy the thermal behavior in a real situation. The adaptive thermal comfort model of ASHRAE 55–2010 was used to assess thermal comfort in long-term hot and dry tropical conditions.

Findings

The results show that the CEB buildings remain hot despite the use of cement or geopolymer binder. Indeed, with both cement and geopolymer binders, on a daily basis, 19 h and 15 h are uncomfortable during, respectively, the hot and cold seasons. An increase of 1% in cement content raises the comfort hours by 9.2 h during the hot season and 11.7 h during the cold season. Hence, the comfort time varies linearly with the cement content in the building material. Moreover, there is no linear relationship between comfort time and geopolymer rate.

Research limitations/implications

Complementary work should also assess the influence of stabilization on building humidity levels. In fact, earthen materials are very sensitive to outdoor humidity and indoor humidity affects thermal comfort even if it is not taken into account in the ASHRAE adaptive thermal comfort model.

Practical implications

The present study will certainly contribute to a better valorization of clay potential in countries with similar climatic conditions.

Social implications

The use of geopolymer binder is a suitable ecological option to replace the cement binder. It is important to mention that nighttime comfort can be increased through passive strategies such as natural ventilation.

Originality/value

Most CEB material stabilization analyses including cement and geopolymer ones were mostly investigated at the laboratory scale and less at the building scale. Also, the influence of the binder rate on the thermal performance of buildings made of cement and geopolymer has not yet been assessed. This paper fills this gap of knowledge by assessing the impact of cement and geopolymer binder rates on the thermal comfort of CEB dwellings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 October 2023

Francis O. Uzuegbunam, Fynecountry N. Aja and Eziyi O. Ibem

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with…

Abstract

Purpose

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with the most significant influence on the thermal comfort of hospital buildings during the hot-dry season in the hot-humid tropics of Southeast Nigeria.

Design/methodology/approach

Field measurements, physical observations and a questionnaire survey of 60 occupants of the wards of the Joint Presbyterian Hospital, Uburu in Ebonyi State, Nigeria were undertaken. The data were analysed using Humphreys' neutral temperature formula, descriptive statistics and multiple regression analysis.

Findings

The results revealed that the neutral temperature for the wards ranges from 26.2 °C to 29.9 °C, the thermal condition in the wards was not comfortable because it failed to meet the ASHRAE Standard 55 as only 65% of the occupants said the thermal condition was acceptable. The number and sizes of windows, building orientation, the presence of high-level windows and higher headroom significantly influenced the occupants' thermal comfort vote.

Practical implications

This research is valuable in estimating comfort temperature and identifying aspects that require attention in enhancing the capacity of NVH wards to effectively meet the thermal comfort needs of occupants in the hot-humid tropics of Southeast Nigeria and other regions that share similar climatic conditions.

Originality/value

To the best of the authors’ knowledge, this is the first study of this nature that provides valuable feedback for building design professionals on the performance of existing hospital buildings in meeting users' thermal comfort needs in the hot-dry season of the hot-humid tropics in Southeast Nigeria.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 October 2023

Ayatallah Magdy, Ayman Hassaan Mahmoud and Ahmed Saleh

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity…

Abstract

Purpose

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity, as well as the improvement of outdoor spaces between office buildings to enhance social activities and quality of outdoor workplaces in a hot arid climate has been subjected to very little studies Thus, this study focuses on business parks (BPs) landscape elements. The objective of this study is to enhance the user's thermal comfort in the work environment, especially in the outdoors attached to the administrative and office buildings such as the BPs.

Design/methodology/approach

This research follows Four-phases methodology. Phase 1 is the investigation of the literature review including the Concept and consideration of BP urban planning, Achieving outdoor thermal comfort (OTC) and shading elements analysis. Phase 2 is the case study initial analysis targeting for prioritizing zones for shading involves three main methods: social assessment, geometrical assessment and environmental assessment. Phase 3 entails selecting shading elements that are suitable for the zones requiring shading parametrize the selected shading elements. Phase 4 focuses on the optimization of OTC through shading arrangements for the prioritized zones.

Findings

Shading design is a multidimensional process that requires consideration of various factors, including social aspects, environmental impact and structural integrity. Shading elements in urban areas play a crucial role in mitigating heat stress by effectively shielding surfaces from solar radiation. The integration of parametric design and computational optimization techniques enhances the shading design process by generating a wide range of alternative solutions.

Research limitations/implications

While conducting this research, it is important to acknowledge certain limitations that may affect the generalizability and scope of the findings. One significant limitation lies in the use of the shade audit method as a tool to prioritize zones for shading. Although the shade audit approach offers practical benefits for designers compared to using questionnaires, it may have its own inherent biases or may not capture the full complexity of human preferences and needs.

Originality/value

Few studies have focused on optimizing the type and location of devices that shade outdoor spaces. As a result, there is no consensus on the workflow that should regulate the design of outdoor shading installations in terms of microclimate and human thermal comfort, therefore testing parametric shading scenarios for open spaces between office buildings to increase the benefit of the outer environment is very important. The study synthesizes OTC strategies by filling the research gap through the implementation of a proper workflow that utilizes parametric thermal comfort.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 7 October 2022

Césaire Hema, Philbert Nshimiyimana, Adamah Messan, Abdou Lawane and Geoffrey Van Moeseke

Appropriate thermal properties of walls can lead to the improvement of the indoor environment of buildings especially in countries with low energy availability such as Burkina…

Abstract

Purpose

Appropriate thermal properties of walls can lead to the improvement of the indoor environment of buildings especially in countries with low energy availability such as Burkina Faso. In order to benefit from these advantages, the thermal properties must be properly characterized. This paper investigates the impact of the design of single- and double-layer walls based on compressed Earth blocks (CEB) on the risk of indoor overheating.

Design/methodology/approach

First a building has been used as a tool to measure climate data. Then, a software program was used to define an accurate thermal model. Two indices were defined: weighted exceedance hour (WEH) related to the risk of overheating and cyclic thickness (ξ) related to the thermal properties of the walls. The aim is to define the appropriate values of ξ which minimized the WEH. The study also assesses the sensitivity of these thermal properties to occupancy profiles.

Findings

The results indicate the arrangements of the thermal properties that can promote comfortable environments. In single-layer wall buildings, ξ = 2.43 and ξ = 3.93 are the most suitable values to minimize WEH for the room occupied during the day and night, respectively. If a double-layer wall is used, ξ = 1.42 and CEB layer inside is the most suitable for the room occupied during the day, while ξ = 2.43 and CEB outside should be preferred in the case of a room with night occupancy profile.

Originality/value

The findings indicate that occupation patterns at room scale should be systematically considered when dealing with wall design in order to improve the thermal comfort.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 February 2023

Mansoure Dormohamadi, Mansoureh Tahbaz and Azin Velashjerdi Farahani

Life experience in hot and arid areas of Iran has proved that in the transitional seasons (spring and autumn) in which the climate is not too hot, passive cooling systems such as…

118

Abstract

Purpose

Life experience in hot and arid areas of Iran has proved that in the transitional seasons (spring and autumn) in which the climate is not too hot, passive cooling systems such as windcatchers (baadgir) have functioned well. This paper intends to investigate the efficiency of a single-side windcatcher as a passive cooling strategy; the case study is the Bina House windcatcher, located in Khousf town, near Birjand city, Iran.

Design/methodology/approach

To achieve the aim, air temperature, relative humidity, wind data and mean radiant temperature were measured by the related tools over five days from September 23 to October 23. Then, the thermal performance of the windcatcher was examined by analyzing the effects of all these factors on human thermal comfort. Quantitative assessment of the indoor environment was estimated using DesignBuilder and its computational fluid dynamics (CFD) tool, a thermal comfort simulation method to compare the cooling potential of the windcatcher. Windcatcher performance was then compared with two other common cooling systems in the area: single-side window, and evaporative cooler.

Findings

The results showed that both windcatcher and evaporative cooler can provide thermal comfort for Khousf residents in the transitional seasons; but the difference is that an evaporative cooler needs to consume water and electricity power, while a windcatcher is a passive cooling system that uses clean energy of wind.

Originality/value

The present study, by quantitative study of single-side windcatchers in a desert region, measured the climatic factors of a historical house and compared it with thermal comfort criteria. Therefore, the results of field measurements were analyzed, and the efficiency of the windcatcher was compared with two other cooling systems, namely single-side ventilation and evaporative cooler, in the two seasons of summer and autumn (transition seasons).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 18 July 2022

Laina Hilma Sari, Brit Anak Kayan and Zahriah Zahriah

During the COVID-19 pandemic in 2020–2021 in Indonesia, the indoor environmental quality (IEQ) of local houses occupied by infected occupants was adversely affected. This paper…

Abstract

Purpose

During the COVID-19 pandemic in 2020–2021 in Indonesia, the indoor environmental quality (IEQ) of local houses occupied by infected occupants was adversely affected. This paper aims to appraise the IEQ of the affected Banda Aceh houses with insights into enabling them to be resilient against the negative impacts of the pandemic.

Design/methodology/approach

Quantitative field measurement in the case study of five concrete houses located in urban areas which are affected by IEQ factors: (1) indoor air quality (IAQ), (2) thermal comfort and (3) visual comfort, compared against the Indonesian National standard (SNI). The case study involved measurement of the first two factors over 24 h, while the third factor was measured during sun hours. Considering the limitations of the measuring tools for logging available data in this research, air quality is measured from 8 am to 10 pm.

Findings

Thermal comfort in the affected houses is generally regarded as warm, optimal and cool comfort, indicated by the effective temperatures of between 20.5 and 27.1°C. Frequently closed windows, limited land area and access had caused a lack of air circulation, with air velocity of dominantly 0 m/s in the houses. The illuminance of natural light received in three houses was insufficient – less than 120 lux as compared with the other two. This study found an uptrend of higher air temperature and relative humidity in the affected houses resulting in poorer IAQ; conversely, the higher the air velocity in the houses, the fewer the indoor air pollutants such as formaldehyde (HCHO), total volatile organic compounds (TVOC) and carbon dioxide (CO2).

Originality/value

This study is a pioneer in evaluating IEQ in houses occupied by COVID-19 patients in Indonesia, especially in dwelling cases in Aceh Province. It also encompasses environmental and societal challenges to sustaining resilient buildings in pandemic hit regions.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 December 2022

Eziaku Onyeizu Rasheed and James Olabode Bamidele Rotimi

Achieving an appropriate indoor environment quality (IEQ) is crucial to a green office environment. Whilst much research has been carried out across the globe on the ideal IEQ for…

Abstract

Purpose

Achieving an appropriate indoor environment quality (IEQ) is crucial to a green office environment. Whilst much research has been carried out across the globe on the ideal IEQ for green offices, little is known about which indoor environment New Zealand office workers prefer and regard as most appropriate. This study investigated New Zealand office workers' preference for a green environment.

Design/methodology/approach

Workers were conveniently selected for a questionnaire survey study from two major cities in the country – Wellington and Auckland. The perception of 149 workers was analysed and discussed based on the workers' demographics. The responses to each question were analysed based on the mean, standard deviation, frequency of responses and difference in opinion.

Findings

The results showed that workers' preferences for an ideal IEQ in green work environments depend largely on demographics. New Zealand office workers prefer work environments to have more fresh air and rely on mixed-mode ventilation and lighting systems. Also New Zealand office workers like to have better acoustic quality with less distraction and background noise. Regarding temperature, workers prefer workspaces to be neither cooler nor warmer. Unique to New Zealand workers, the workers prefer to have some (not complete) individual control over the IEQ in offices.

Research limitations/implications

This study was conducted in the summer season, which could have impacted the responses received. Also the sample size was limited to two major cities in the country. Further studies should be conducted in other regions and during different seasons.

Practical implications

This study provides the opportunity for more studies in this area of research and highlights significant findings worthy of critical investigations. The results of this study benefit various stakeholders, such as facilities managers and workplace designers, and support proactive response approaches to achieving building occupants' preferences for an ideal work environment.

Originality/value

This study is the first research in New Zealand to explore worker preferences of IEQ that is not limited to a particular building, expanding the body of knowledge on workers' perception of the ideal work environment in the country.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 24 January 2024

Titus Ebenezer Kwofie, Michael Nii Addy, Daniel Yaw Addai Duah, Clinton Ohis Aigbavboa, Emmanuel Banahene Owusu and George Felix Olympio

As public–private partnerships (PPPs) have become preferred and veritable approach to deliver affordable housing, the seemingly lack of understanding of the significant factors…

Abstract

Purpose

As public–private partnerships (PPPs) have become preferred and veritable approach to deliver affordable housing, the seemingly lack of understanding of the significant factors that impact on success has become a notable setback. This study aims to delineate significant factors that can support decisions in affordable PPP public housing delivery.

Design/methodology/approach

Largely, a questionnaire survey was adopted to elicit insights from practitioners, policymakers and experts to develop an evaluative decision support model using an analytical hierarchy process and multi-attribute utility technique approach. Further, an expert illustration was conducted to evaluate and validate the results on the housing typologies.

Findings

The results revealed that energy efficiency and low-cost green building materials scored the highest weighting of all the criteria. Furthermore, multi-storey self-contained flats were found to be the most preferred housing typology and were significantly influenced by these factors. From the model evaluation, the scores on the factors of sustainability, affordability, cultural values and accountability were consistent across all typologies of housing whereas that of benchmarking, governance and transparency were varied.

Originality/value

The decision support factors captured varied dimensions of key factors that impact on affordable PPP housing that have not been considered in an integrated manner. These findings offer objective and systematic support to decision-making in affordable PPP housing delivery.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 August 2023

Zul-Atfi Ismail

At the beginning of the Corona Virus Disease 2019 (COVID-19) pandemic, a digitalized construction environments surfaced in the heating, ventilation and air conditioning (HVAC…

Abstract

Purpose

At the beginning of the Corona Virus Disease 2019 (COVID-19) pandemic, a digitalized construction environments surfaced in the heating, ventilation and air conditioning (HVAC) systems in the form of a modern delivery system called demand controlled ventilation (DCV). Demand controlled ventilation has the potential to solve the building ventilation's biggest problem of managing indoor air quality (IAQ) for controlling COVID-19 transmission in indoor environments. However, the improper evaluation and information management of infection prevention on dense crowd activities such as measurement errors and volatile organic compound (VOC) generation failure rates, is fragmented so the aim of this research is to integrate this and explore potentials with machine learning algorithms (MLAs).

Design/methodology/approach

The method used is a thorough systematic literature review (SLR) approach. The results of this research consist of a detailed description of the DCV system and digitalized construction process of its IAQ elements.

Findings

The discussion revealed that DCV has a potential for being further integrated by perceiving it as a MLAs and hereby enabling the management of IAQ level from the perspective of health risk function mechanism (i.e. VOC and CO2) for maintaining a comfortable thermal environment and save energy of public and private buildings (PPBs). The appropriate MLA can also be selected in different occupancy patterns for seasonal variations, ventilation behavior, building type and locations, as well as current indoor air pollution control strategies. Furthermore, the conceptual framework showed that MLA application such as algorithm design/Model Predictive Control (MPC) integration can alleviate the high spread limitation of COVID-19 in the indoor environment.

Originality/value

Finally, the research concludes that a large unexploited potential within integration and innovation is recognized in the DCV system and MLAs which can be improved to optimize level of IAQ from the perspective of health throughout the building sector DCV process systems. The requirements of CO2 based DCV along with VOC concentrations monitoring practice should be taken into consideration through further research and experience with adaption and implementation from the ventilation control initial stage of the DCV process.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of 182