Search results

1 – 10 of over 5000
Article
Publication date: 6 June 2016

Ashraf Muhammad, Ali J Chamkha, S Iqbal and Masud Ahmad

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the…

Abstract

Purpose

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the viscosity and thermal conductivity are assumed to be temperature-dependent. In this case, the motion is governed by a coupled set of three nonlinear partial differential equations, which are solved numerically by using the finite difference method (FDM) by introducing the primitive variable formulation. Calculations of the coupled equations are performed to investigate the effects of the different governing parameters on the profiles of velocity, temperature and the transverse component of magnetic field. The effects of the thermal conductivity variation parameter, viscosity variation parameter, magnetic Prandtl number Pmr, magnetic force parameter S, mixed convection parameter Ri and the Prandtl number Pr on the flow structure and heat transfer characteristics are also examined.

Design/methodology/approach

FDM.

Findings

It is noted that when the Prandtl number Pr is sufficiently large, i.e. Pr=100, the buoyancy force that driven the fluid motion is decreased that decrease the momentum boundary layer and there is no change in thermal boundary layer is noticed. It is also noted that due to slow motion of the fluid the magnetic current generates which increase the magnetic boundary layer thickness at the surface. It is observed that the momentum boundary layer thickness is increased, thermal and magnetic field boundary layers are decreased with the increase of thermal conductivity variation parameter =100. The maximum boundary layer thickness is increased for =100 and there is no change seen in the case of thermal boundary layer thickness but magnetic field boundary layer is deceased. The momentum boundary layer thickness shoot quickly for =40 but is very smooth for =50.There is no change is seen for the case of thermal boundary layer and very clear decay for =40 is noted.

Originality/value

This work is original research work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 July 2021

Abdeslam Omara, Mouna Touiker and Abderrahim Bourouis

This paper aims to consider numerical analysis of laminar double-diffusive natural convection inside a non-homogeneous closed medium composed of a saturated porous matrix and a…

Abstract

Purpose

This paper aims to consider numerical analysis of laminar double-diffusive natural convection inside a non-homogeneous closed medium composed of a saturated porous matrix and a clear binary fluid under spatial sinusoidal heating/cooling on one side wall and uniform salting.

Design/methodology/approach

The domain of interest is a partially square porous enclosure with sinusoidal wall heating and cooling. The fluid flow, heat and mass transfer dimensionless governing equations associated with the corresponding boundary conditions are discretized using the finite volume method. The resulting algebraic equations are solved by an in-house FORTRAN code and the SIMPLE algorithm to handle the non-linear character of conservation equations. The validity of the in-house FORTRAN code is checked by comparing the current results with previously published experimental and numerical works. The effect of the porous layer thickness, the spatial frequency of heating and cooling, the Darcy number, the Rayleigh number and the porous to fluid thermal conductivity ratio is analyzed.

Findings

The results demonstrate that for high values of the spatial frequency of heating and cooling (f = 7), temperature contours show periodic variations with positive and negative values providing higher temperature gradient near the thermally active wall. In this case, the temperature variation is mainly in the porous layer, while the temperature of the clear fluid region is practically the same as that imposed on the left vertical wall. This aspect can have a beneficial impact on thermal insulation. Besides, the porous to fluid thermal conductivity ratio, Rk, has practically no effect on Shhot wall, contrary to Nuinterface where a strong increase is observed as Rk is increased from 0.1 to 100, and much heat transfer from the hot wall to the clear fluid via the porous media is obtained.

Practical implications

The findings are useful for devices working on double-diffusive natural convection inside non-homogenous cavities.

Originality/value

The authors believe that the presented results are original and have not been published elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 December 2020

Thameem Basha Hayath, Sivaraj Ramachandran, Ramachandra Prasad Vallampati and O. Anwar Bég

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many…

Abstract

Purpose

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many applications, the variability of these properties plays a significant role in modifying transport characteristics while the temperature difference in the boundary layer is notable. These include drag reduction in heavy oil transport systems, petroleum purification and coating manufacturing. The purpose of this study is to develop, a comprehensive mathematical model, motivated by the last of these applications, to explore the impact of variable viscosity and variable thermal conductivity characteristics in magnetohydrodynamic non-Newtonian nanofluid enrobing boundary layer flow over a horizontal circular cylinder in the presence of cross-diffusion (Soret and Dufour effects) and appreciable thermal radiative heat transfer under a static radial magnetic field.

Design/methodology/approach

The Williamson pseudoplastic model is deployed for rheology of the nanofluid. Buongiorno’s two-component model is used for nanoscale effects. The dimensionless nonlinear partial differential equations have been solved by using an implicit finite difference Keller box scheme. Extensive validation with earlier studies in the absence of nanoscale and variable property effects is included.

Findings

The influence of notable parameters such as Weissenberg number, variable viscosity, variable thermal conductivity, Soret and Dufour numbers on heat, mass and momentum characteristics are scrutinized and visualized via graphs and tables.

Research limitations/implications

Buongiorno (two-phase) nanofluid model is used to express the momentum, energy and concentration equations with the following assumptions. The laminar, steady, incompressible, free convective flow of Williamson nanofluid is considered. The body force is implemented in the momentum equation. The induced magnetic field strength is smaller than the external magnetic field and hence it is neglected. The Soret and Dufour effects are taken into consideration.

Practical implications

The variable viscosity and thermal conductivity are considered to investigate the fluid characteristic of Williamson nanofluid because of viscosity and thermal conductivity have a prime role in many industries such as petroleum refinement, food and beverages, petrochemical, coating manufacturing, power and environment.

Social implications

This fluid model displays exact rheological characteristics of bio-fluids and industrial fluids, for instance, blood, polymer melts/solutions, nail polish, paint, ketchup and whipped cream.

Originality/value

The outcomes disclose that the Williamson nanofluid velocity declines by enhancing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle concentration boundary layer thickness is enhanced with greater streamwise coordinate values. An increase in Dufour number or a decrease in Soret number slightly enhances the nanofluid temperature and thickens the thermal boundary layer. Flow deceleration is induced with greater viscosity parameter. Nanofluid temperature is elevated with greater Weissenberg number and thermophoresis nanoscale parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2004

Burhan Çuhadaroğlu

The hydrodynamic and thermal characteristics of the turbulent boundary layer developed on a porous wall with heat transfer and various angles of transpiration are analyzed…

Abstract

The hydrodynamic and thermal characteristics of the turbulent boundary layer developed on a porous wall with heat transfer and various angles of transpiration are analyzed numerically with the proper boundary conditions. The wall functions of the viscous and turbulent sub‐layers for velocity and temperature are modified to allow for the effect of the angle of injection and suction through the porous wall. The finite difference method based on a control volume approach is used for solving the time averaged Navier‐Stokes equations for incompressible flow in conjunction with the standard k‐ε turbulence model equations. A non‐uniform staggered grid arrangement is used. The parameters studied include the suction and injection velocity (Vw) and the angle (α) of the injection and suction. The present numerical results of the normal injection and suction are compared with a known experimental data and a good agreement is obtained. The numerical results also indicate that the characteristics of the turbulent boundary layer such as local friction coefficient and thermal boundary layer thickness are substantially influenced by the velocity and the angle of transpiration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 December 2017

O.K. Koriko, I.L. Animasaun, M. Gnaneswara Reddy and N. Sandeep

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm…

107

Abstract

Purpose

The purpose of this paper is to scrutinize the effects of nonlinear thermal radiation and thermal stratification effects on the flow of three-dimensional Eyring-Powell 36 nm alumina-water nanofluid within the thin boundary layer in the presence of quartic autocatalytic kind of chemical reaction effects, and to unravel the effects of a magnetic field parameter, random motion of the tiny nanoparticles and volume fraction on the flow.

Design/methodology/approach

The chemical reaction between homogeneous (Eyring-Powell 36 nm alumina-water) bulk fluid and heterogeneous (three molecules of the catalyst at the surface) in the flow of magnetohydrodynamic three-dimensional flow is modeled as a quartic autocatalytic kind of chemical reaction. The electromagnetic radiation which occurs within the boundary layer is treated as the nonlinear form due to the fact that Taylor series expansion may not give full details of such effects within the boundary layer. With the aid of appropriate similarity variables, the nonlinear coupled system of partial differential equation which models the flow was reduced to ordinary differential equation boundary value problem.

Findings

A favorable agreement of the present results is obtained by comparing it for a limiting case with the published results; hence, reliable results are presented. The concentration of homogeneous bulk fluid (Eyring-Powell nanofluid) increases and decreases with ϕ and Pr, respectively. The increase in the value of magnetic field parameter causes vertical and horizontal velocities of the flow within the boundary layer to decrease significantly. The decrease in the vertical and horizontal velocities of Eyring-Powell nanofluid flow within the boundary layer is guaranteed due to an increase in the value of M. Concentration of homogeneous fluid increases, while the concentration of the heterogeneous catalyst at the wall decreases with M.

Originality/value

Considering the industrial applications of thermal stratification in solar engineering and polymer processing where the behavior of the flow possesses attributes of Eyring-Powell 36 nm alumina-water, this paper presents the solution of the flow problem considering 36 nm alumina nanoparticles, thermophoresis, stratification of thermal energy, Brownian motion and nonlinear thermal radiation. In addition, the aim and objectives of this paper fill such vacuum in the industry.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 August 2018

Ali Belhocine and Wan Zaidi Wan Omar

The purpose of this paper is to re-examine the assumptions implicit in Leveque’s approximation, and the variation of the temperature and the thickness of the boundary layer were…

Abstract

Purpose

The purpose of this paper is to re-examine the assumptions implicit in Leveque’s approximation, and the variation of the temperature and the thickness of the boundary layer were illustrated using the developed solution. The analytical solutions are then checked against numerical solution programming by FORTRAN code obtained via using Runge–Kutta fourth-order (RK4) method. Finally, other important thermal results obtained from this analysis, such as approximate Nusselt number in the thermal entrance region, was discussed in detail. After that, the analytical results of the present paper are validated with certain previous investigations which were found in the specialized literature.

Design/methodology/approach

By defining a similarity variable, the governing equations are reduced to a dimensionless equation with an analytic solution in the entrance region. This paper gives justification for the similarity variable via scaling analysis, details the process of converting to a similarity form and presents a similarity solution. The calculation methodology for numerical resolution is based on the RK4 technique.

Findings

The profiles of the solutions are provided from which the authors infer that the numerical and exact solutions agreed very well. Another result that the authors obtained from this paper is the number of Nusselt in the thermal entrance region for which a parametric study was carried out and discussed well for the impact of scientific contribution.

Originality/value

The novelty of this paper is the application of the RK4 with a step size control, as a sequential numerical method of a ODEs system compared with the exact similarity solution of the thermal boundary layer problem.

Details

World Journal of Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 May 2020

Mahantesh M. Nandeppanavar, M.C. Kemparaju, R. Madhusudhan and S. Vaishali

The steady two-dimensional laminar boundary layer flow, heat and mass transfer over a flat plate with convective surface heat flux was considered. The governing nonlinear partial…

Abstract

Purpose

The steady two-dimensional laminar boundary layer flow, heat and mass transfer over a flat plate with convective surface heat flux was considered. The governing nonlinear partial differential equations were transformed into a system of nonlinear ordinary differential equations and then solved numerically by Runge–Kutta method with the most efficient shooting technique. Then, the effect of variable viscosity and variable thermal conductivity on the fluid flow with thermal radiation effects and viscous dissipation was studied. Velocity, temperature and concentration profiles respectively were plotted for various values of pertinent parameters. It was found that the momentum slip acts as a boost for enhancement of the velocity profile in the boundary layer region, whereas temperature and concentration profiles decelerate with the momentum slip.

Design/methodology/approach

Numerical Solution is applied to find the solution of the boundary value problem.

Findings

Velocity, heat transfer analysis is done with comparing earlier results for some standard cases.

Originality/value

100

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 August 2017

Thirupathi Thumma, A. Chamkha and Siva Reddy Sheri

This paper aims to focus on the mathematical modeling of magnetohydrodynamic natural convective boundary layer flow of nanofluids past a stationary and moving inclined porous…

Abstract

Purpose

This paper aims to focus on the mathematical modeling of magnetohydrodynamic natural convective boundary layer flow of nanofluids past a stationary and moving inclined porous plate considering temperature and concentration gradients with suction effects.

Design/methodology/approach

The transformed non-dimensional and coupled governing partial differential equations are solved numerically using the finite element method.

Findings

The obtained numerical results for physical governing parameters on the velocity, temperature and concentration distributions are exemplified graphically and presented quantitatively. The boundary layer thickness increased with the increasing values of Soret, Dufour and Grashof numbers, while the thickness of boundary layer decreased with increasing values of suction for both stationary and moving plate cases. The primary and secondary velocity profiles are decreasing with an angle of inclination for moving plate and inclination has no significant effect for the stationary plate. An increase of the Soret number and Dufour number tend to increase the heat and mass transfer, while an increase of suction reduces the heat and mass transfer.

Originality/value

The problem is an important contribution to the field of nanofluid science and technology and is relevant to high temperature rotating chemical engineering systems exploiting magnetized nanofluids. This study is relatively original in nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 May 2020

S. Das, R.R. Patra and R.N. Jana

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically…

Abstract

Purpose

The purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.

Findings

Results reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.

Originality/value

Till now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 June 2016

Md. Jashim Uddin, O. Anwar Bég and Izani Md. Ismail

The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical…

Abstract

Purpose

The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical plate in a saturated porous medium taking into account thermal and mass convective boundary conditions numerically.

Design/methodology/approach

The governing equations are reduced to a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The transformed equations are then solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method with Maple 17 and Adomian decomposition method (ADM) in Mathematica.

Findings

The transformed equations are controlled by the parameter: power-law exponent, n; temperature ratio, Tr; Rosseland radiation-conduction, R; conduction-convection, Nc; and diffusion-convection, Nd. Temperature and nanoparticle concentration is enhanced with convection-diffusion parameter as are temperatures. Velocities are depressed with greater power-law rheological index whereas temperatures are elevated. Increasing thermal radiation flux accelerate the flow but to strongly heat the boundary layer. Very good correlation of the Maple solutions with previous stationary free stream and ADM solutions for a moving free stream, are obtained.

Practical implications

The study is relevant to high temperature nano-polymer manufacturing systems.

Originality/value

Lie symmetry group is used for the first time to transform the governing equations into a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The study is relevant to high temperature nano-polymer manufacturing systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000